Nabeela Anwar, Iftikhar Ahmad, Hijab Javaid, Adiqa Kausar Kiani, Muhammad Shoaib, Muhammad Asif Zahoor Raja
{"title":"用随机 Runge-Kutta 对具有布朗不确定性的登革热流行病模型进行数值处理","authors":"Nabeela Anwar, Iftikhar Ahmad, Hijab Javaid, Adiqa Kausar Kiani, Muhammad Shoaib, Muhammad Asif Zahoor Raja","doi":"10.1142/s0217984924504086","DOIUrl":null,"url":null,"abstract":"<p>The current challenge faced by the global research community is how to effectively address, manage, and control the spread of infectious diseases. This research focuses on conducting a dynamic system analysis of a stochastic epidemic model capable of predicting the persistence or extinction of the dengue disease. Numerical methodology on deterministic procedures, i.e. Adams method and stochastic/probabilistic schemes, i.e. stochastic Runge–Kutta method, is employed to simulate and forecast the spread of disease. This study specifically employs two nonlinear mathematical systems, namely the deterministic vector-borne dengue epidemic (DVBDE) and the stochastic vector-borne dengue epidemic (SVBDE) models, for numerical treatment. The objective is to simulate the dynamics of these models and ascertain their dynamic behavior. The VBDE model segmented the population into the following five classes: susceptible population, infected population, recovered population, susceptible mosquitoes, and the infected mosquitoes. The approximate solution for the dynamic evolution for each population is calculated by generating a significant number of scenarios varying the infected population’s recovery rate, human population birth rate, mosquitoes birth rate, contaminated people coming into contact with healthy people, the mortality rate of people, mosquitos population death rate and infected mosquito contact rate with population that is not infected. Comparative evaluations of the deterministic and stochastic models are presented, highlighting their unique characteristics and performance, through the execution of numerical simulations and analysis of the results.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"106 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Runge–Kutta for numerical treatment of dengue epidemic model with Brownian uncertainty\",\"authors\":\"Nabeela Anwar, Iftikhar Ahmad, Hijab Javaid, Adiqa Kausar Kiani, Muhammad Shoaib, Muhammad Asif Zahoor Raja\",\"doi\":\"10.1142/s0217984924504086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The current challenge faced by the global research community is how to effectively address, manage, and control the spread of infectious diseases. This research focuses on conducting a dynamic system analysis of a stochastic epidemic model capable of predicting the persistence or extinction of the dengue disease. Numerical methodology on deterministic procedures, i.e. Adams method and stochastic/probabilistic schemes, i.e. stochastic Runge–Kutta method, is employed to simulate and forecast the spread of disease. This study specifically employs two nonlinear mathematical systems, namely the deterministic vector-borne dengue epidemic (DVBDE) and the stochastic vector-borne dengue epidemic (SVBDE) models, for numerical treatment. The objective is to simulate the dynamics of these models and ascertain their dynamic behavior. The VBDE model segmented the population into the following five classes: susceptible population, infected population, recovered population, susceptible mosquitoes, and the infected mosquitoes. The approximate solution for the dynamic evolution for each population is calculated by generating a significant number of scenarios varying the infected population’s recovery rate, human population birth rate, mosquitoes birth rate, contaminated people coming into contact with healthy people, the mortality rate of people, mosquitos population death rate and infected mosquito contact rate with population that is not infected. Comparative evaluations of the deterministic and stochastic models are presented, highlighting their unique characteristics and performance, through the execution of numerical simulations and analysis of the results.</p>\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924504086\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924504086","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Stochastic Runge–Kutta for numerical treatment of dengue epidemic model with Brownian uncertainty
The current challenge faced by the global research community is how to effectively address, manage, and control the spread of infectious diseases. This research focuses on conducting a dynamic system analysis of a stochastic epidemic model capable of predicting the persistence or extinction of the dengue disease. Numerical methodology on deterministic procedures, i.e. Adams method and stochastic/probabilistic schemes, i.e. stochastic Runge–Kutta method, is employed to simulate and forecast the spread of disease. This study specifically employs two nonlinear mathematical systems, namely the deterministic vector-borne dengue epidemic (DVBDE) and the stochastic vector-borne dengue epidemic (SVBDE) models, for numerical treatment. The objective is to simulate the dynamics of these models and ascertain their dynamic behavior. The VBDE model segmented the population into the following five classes: susceptible population, infected population, recovered population, susceptible mosquitoes, and the infected mosquitoes. The approximate solution for the dynamic evolution for each population is calculated by generating a significant number of scenarios varying the infected population’s recovery rate, human population birth rate, mosquitoes birth rate, contaminated people coming into contact with healthy people, the mortality rate of people, mosquitos population death rate and infected mosquito contact rate with population that is not infected. Comparative evaluations of the deterministic and stochastic models are presented, highlighting their unique characteristics and performance, through the execution of numerical simulations and analysis of the results.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.