{"title":"有限一般线性群中的传递性","authors":"Alena Ernst, Kai-Uwe Schmidt","doi":"10.1007/s00209-024-03511-x","DOIUrl":null,"url":null,"abstract":"<p>It is known that the notion of a transitive subgroup of a permutation group <i>G</i> extends naturally to subsets of <i>G</i>. We consider subsets of the general linear group <span>\\({{\\,\\textrm{GL}\\,}}(n,q)\\)</span> acting transitively on flag-like structures, which are common generalisations of <i>t</i>-dimensional subspaces of <span>\\(\\mathbb {F}_q^n\\)</span> and bases of <i>t</i>-dimensional subspaces of <span>\\(\\mathbb {F}_q^n\\)</span>. We give structural characterisations of transitive subsets of <span>\\({{\\,\\textrm{GL}\\,}}(n,q)\\)</span> using the character theory of <span>\\({{\\,\\textrm{GL}\\,}}(n,q)\\)</span> and interpret such subsets as designs in the conjugacy class association scheme of <span>\\({{\\,\\textrm{GL}\\,}}(n,q)\\)</span>. In particular we generalise a theorem of Perin on subgroups of <span>\\({{\\,\\textrm{GL}\\,}}(n,q)\\)</span> acting transitively on <i>t</i>-dimensional subspaces. We survey transitive subgroups of <span>\\({{\\,\\textrm{GL}\\,}}(n,q)\\)</span>, showing that there is no subgroup of <span>\\({{\\,\\textrm{GL}\\,}}(n,q)\\)</span> with <span>\\(1<t<n\\)</span> acting transitively on <i>t</i>-dimensional subspaces unless it contains <span>\\({{\\,\\textrm{SL}\\,}}(n,q)\\)</span> or is one of two exceptional groups. On the other hand, for all fixed <i>t</i>, we show that there exist nontrivial subsets of <span>\\({{\\,\\textrm{GL}\\,}}(n,q)\\)</span> that are transitive on linearly independent <i>t</i>-tuples of <span>\\(\\mathbb {F}_q^n\\)</span>, which also shows the existence of nontrivial subsets of <span>\\({{\\,\\textrm{GL}\\,}}(n,q)\\)</span> that are transitive on more general flag-like structures. We establish connections with orthogonal polynomials, namely the Al-Salam–Carlitz polynomials, and generalise a result by Rudvalis and Shinoda on the distribution of the number of fixed points of the elements in <span>\\({{\\,\\textrm{GL}\\,}}(n,q)\\)</span>. Many of our results can be interpreted as <i>q</i>-analogs of corresponding results for the symmetric group.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"26 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transitivity in finite general linear groups\",\"authors\":\"Alena Ernst, Kai-Uwe Schmidt\",\"doi\":\"10.1007/s00209-024-03511-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is known that the notion of a transitive subgroup of a permutation group <i>G</i> extends naturally to subsets of <i>G</i>. We consider subsets of the general linear group <span>\\\\({{\\\\,\\\\textrm{GL}\\\\,}}(n,q)\\\\)</span> acting transitively on flag-like structures, which are common generalisations of <i>t</i>-dimensional subspaces of <span>\\\\(\\\\mathbb {F}_q^n\\\\)</span> and bases of <i>t</i>-dimensional subspaces of <span>\\\\(\\\\mathbb {F}_q^n\\\\)</span>. We give structural characterisations of transitive subsets of <span>\\\\({{\\\\,\\\\textrm{GL}\\\\,}}(n,q)\\\\)</span> using the character theory of <span>\\\\({{\\\\,\\\\textrm{GL}\\\\,}}(n,q)\\\\)</span> and interpret such subsets as designs in the conjugacy class association scheme of <span>\\\\({{\\\\,\\\\textrm{GL}\\\\,}}(n,q)\\\\)</span>. In particular we generalise a theorem of Perin on subgroups of <span>\\\\({{\\\\,\\\\textrm{GL}\\\\,}}(n,q)\\\\)</span> acting transitively on <i>t</i>-dimensional subspaces. We survey transitive subgroups of <span>\\\\({{\\\\,\\\\textrm{GL}\\\\,}}(n,q)\\\\)</span>, showing that there is no subgroup of <span>\\\\({{\\\\,\\\\textrm{GL}\\\\,}}(n,q)\\\\)</span> with <span>\\\\(1<t<n\\\\)</span> acting transitively on <i>t</i>-dimensional subspaces unless it contains <span>\\\\({{\\\\,\\\\textrm{SL}\\\\,}}(n,q)\\\\)</span> or is one of two exceptional groups. On the other hand, for all fixed <i>t</i>, we show that there exist nontrivial subsets of <span>\\\\({{\\\\,\\\\textrm{GL}\\\\,}}(n,q)\\\\)</span> that are transitive on linearly independent <i>t</i>-tuples of <span>\\\\(\\\\mathbb {F}_q^n\\\\)</span>, which also shows the existence of nontrivial subsets of <span>\\\\({{\\\\,\\\\textrm{GL}\\\\,}}(n,q)\\\\)</span> that are transitive on more general flag-like structures. We establish connections with orthogonal polynomials, namely the Al-Salam–Carlitz polynomials, and generalise a result by Rudvalis and Shinoda on the distribution of the number of fixed points of the elements in <span>\\\\({{\\\\,\\\\textrm{GL}\\\\,}}(n,q)\\\\)</span>. Many of our results can be interpreted as <i>q</i>-analogs of corresponding results for the symmetric group.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03511-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03511-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑一般线性群 ({{\textrm{GL}\,}}(n,q)\)的子集在旗状结构上的传递作用,这些结构是 \(\mathbb {F}_q^n\) 的 t 维子空间和 \(\mathbb {F}_q^n\) 的 t 维子空间的基的普通泛化。我们利用 \({{\,\textrm{GL}\,}}(n,q)\) 的特征理论给出了 \({{\,\textrm{GL}\,}}(n,q)\) 传递子集的结构特征,并将这些子集解释为 \({{\,\textrm{GL}\,}}(n,q)\) 共轭类关联方案中的设计。特别地,我们概括了佩林关于在 t 维子空间上横向作用的 \({{\,\textrm{GL}\,}}(n,q)\) 子群的定理。我们考察了 \({{\,\textrm{GL}\,}}(n,q)\) 的传递子群,发现 \({{\,\textrm{GL}\,}}(n,q)\) 的子群中没有 \(1<;t<n\) 在 t 维子空间上起传递作用,除非它包含 \({{\,\textrm{SL}\,}}(n,q)\) 或者是两个例外群之一。另一方面,对于所有固定的 t,我们证明了存在着 \({{\,\textrm{GL}\,}}(n,q)\) 的非难子集,这些子集在 \(\mathbb {F}_q^n\) 的线性独立 t 元组上是传递的、这也说明了在\({{\,\textrm{GL}\,}}(n,q)\)的非重子集上存在传递性的更一般的类旗结构。我们建立了与({{\,\textrm{GL}\,}}(n,q)\)正交多项式(即 Al-Salam-Carlitz 多项式)的联系,并推广了 Rudvalis 和 Shinoda 关于 \({{\,\textrm{GL}\,}}(n,q)\) 中元素的定点数分布的结果。我们的许多结果可以解释为对称群相应结果的 q-analogs.
It is known that the notion of a transitive subgroup of a permutation group G extends naturally to subsets of G. We consider subsets of the general linear group \({{\,\textrm{GL}\,}}(n,q)\) acting transitively on flag-like structures, which are common generalisations of t-dimensional subspaces of \(\mathbb {F}_q^n\) and bases of t-dimensional subspaces of \(\mathbb {F}_q^n\). We give structural characterisations of transitive subsets of \({{\,\textrm{GL}\,}}(n,q)\) using the character theory of \({{\,\textrm{GL}\,}}(n,q)\) and interpret such subsets as designs in the conjugacy class association scheme of \({{\,\textrm{GL}\,}}(n,q)\). In particular we generalise a theorem of Perin on subgroups of \({{\,\textrm{GL}\,}}(n,q)\) acting transitively on t-dimensional subspaces. We survey transitive subgroups of \({{\,\textrm{GL}\,}}(n,q)\), showing that there is no subgroup of \({{\,\textrm{GL}\,}}(n,q)\) with \(1<t<n\) acting transitively on t-dimensional subspaces unless it contains \({{\,\textrm{SL}\,}}(n,q)\) or is one of two exceptional groups. On the other hand, for all fixed t, we show that there exist nontrivial subsets of \({{\,\textrm{GL}\,}}(n,q)\) that are transitive on linearly independent t-tuples of \(\mathbb {F}_q^n\), which also shows the existence of nontrivial subsets of \({{\,\textrm{GL}\,}}(n,q)\) that are transitive on more general flag-like structures. We establish connections with orthogonal polynomials, namely the Al-Salam–Carlitz polynomials, and generalise a result by Rudvalis and Shinoda on the distribution of the number of fixed points of the elements in \({{\,\textrm{GL}\,}}(n,q)\). Many of our results can be interpreted as q-analogs of corresponding results for the symmetric group.