Huihui Wang, Qian Long, Jie Zeng, Xu Gao, You Zhou, Zaixue Zheng, Wanlin Wang
{"title":"从稀土铈合金化废料中提纯 7CrSiMnMoV 钢","authors":"Huihui Wang, Qian Long, Jie Zeng, Xu Gao, You Zhou, Zaixue Zheng, Wanlin Wang","doi":"10.1007/s40831-024-00852-z","DOIUrl":null,"url":null,"abstract":"<p>It is crucial to control the sulfur and oxygen in the steel liquid to produce high-cleanliness rare earth steel. This study attempted to investigate the effect of rare earth Ce content on purifying the produced 7CrSiMnMoV steel from scrap steel by modified rare earth inclusions based on a proposed integrated process of high-alkalinity refining slag desulfurization, Si–Mn deoxidation, Al-enhanced deoxidation, and rare earth Ce alloying. The results show that the evolution mechanism of rare earth inclusions is 25% Al<sub>2</sub>O<sub>3</sub>⋅25% MgO⋅50% Ce<sub>2</sub>O<sub>3</sub> → 25% Al<sub>2</sub>O<sub>3</sub>⋅75% Ce<sub>2</sub>O<sub>3</sub>, 12.5% Al<sub>2</sub>O<sub>3</sub>⋅MnS⋅Ce<sub>2</sub>O<sub>2</sub>S → Ce<sub>2</sub>O<sub>3</sub>, Ce<sub>2</sub>O<sub>2</sub>S → Ce<sub>2</sub>S<sub>3</sub>, Ce<sub>2</sub>O<sub>2</sub>S → (Mn Ce)<sub>2</sub>S<sub>3</sub>, Ce<sub>2</sub>O<sub>2</sub>S, with the rare earth Ce-added content of 0.009%, 0.012%, and 0.100%, respectively. And rare earth Ce can improve the cleanliness of steel liquid by controlling the rare earth Ce-added content to form the M1-Ce<sub>2</sub>O<sub>3</sub> (M1 is Al, Mg, etc.) and M2-Ce<sub>2</sub>SO<sub>2</sub> (M2 is Ca, Mn, etc.) rare earth inclusions; the oxygen and sulfur concentrations can reach 0.0031% and 0.0026%, respectively, with a rare earth Ce content of 0.012%. However, excessive amounts of rare earth Ce could deteriorate the cleanliness of steel liquid.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3><p>To produce 7CrSiMnMoV rare earth steel by scrap steel based on an integrated process of high-alkalinity refining slag desulfurization, Si–Mn deoxidation, Al-enhanced deoxidation, and rare earth Ce alloying and purifying steel liquid.Purifying 7CrSiMnMoV rare earth steel liquid by modified rare earth inclusion.Rare earth Ce can improve the cleanliness of steel liquid by controlling the rare earth Ce-added content to form M-Ce2O3 (M is Al, Mg, etc.) and M-Ce2SO2 (M is Ca, Mn, etc.) rare earth inclusions; the oxygen and sulfur concentrations can reach 0.0031% and 0.0026%, respectively, with a rare earth Ce content of 0.012%.</p>","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"17 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Purifying 7CrSiMnMoV Steel from Scrap Modified with Rare Earth Cerium Alloying\",\"authors\":\"Huihui Wang, Qian Long, Jie Zeng, Xu Gao, You Zhou, Zaixue Zheng, Wanlin Wang\",\"doi\":\"10.1007/s40831-024-00852-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is crucial to control the sulfur and oxygen in the steel liquid to produce high-cleanliness rare earth steel. This study attempted to investigate the effect of rare earth Ce content on purifying the produced 7CrSiMnMoV steel from scrap steel by modified rare earth inclusions based on a proposed integrated process of high-alkalinity refining slag desulfurization, Si–Mn deoxidation, Al-enhanced deoxidation, and rare earth Ce alloying. The results show that the evolution mechanism of rare earth inclusions is 25% Al<sub>2</sub>O<sub>3</sub>⋅25% MgO⋅50% Ce<sub>2</sub>O<sub>3</sub> → 25% Al<sub>2</sub>O<sub>3</sub>⋅75% Ce<sub>2</sub>O<sub>3</sub>, 12.5% Al<sub>2</sub>O<sub>3</sub>⋅MnS⋅Ce<sub>2</sub>O<sub>2</sub>S → Ce<sub>2</sub>O<sub>3</sub>, Ce<sub>2</sub>O<sub>2</sub>S → Ce<sub>2</sub>S<sub>3</sub>, Ce<sub>2</sub>O<sub>2</sub>S → (Mn Ce)<sub>2</sub>S<sub>3</sub>, Ce<sub>2</sub>O<sub>2</sub>S, with the rare earth Ce-added content of 0.009%, 0.012%, and 0.100%, respectively. And rare earth Ce can improve the cleanliness of steel liquid by controlling the rare earth Ce-added content to form the M1-Ce<sub>2</sub>O<sub>3</sub> (M1 is Al, Mg, etc.) and M2-Ce<sub>2</sub>SO<sub>2</sub> (M2 is Ca, Mn, etc.) rare earth inclusions; the oxygen and sulfur concentrations can reach 0.0031% and 0.0026%, respectively, with a rare earth Ce content of 0.012%. However, excessive amounts of rare earth Ce could deteriorate the cleanliness of steel liquid.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3><p>To produce 7CrSiMnMoV rare earth steel by scrap steel based on an integrated process of high-alkalinity refining slag desulfurization, Si–Mn deoxidation, Al-enhanced deoxidation, and rare earth Ce alloying and purifying steel liquid.Purifying 7CrSiMnMoV rare earth steel liquid by modified rare earth inclusion.Rare earth Ce can improve the cleanliness of steel liquid by controlling the rare earth Ce-added content to form M-Ce2O3 (M is Al, Mg, etc.) and M-Ce2SO2 (M is Ca, Mn, etc.) rare earth inclusions; the oxygen and sulfur concentrations can reach 0.0031% and 0.0026%, respectively, with a rare earth Ce content of 0.012%.</p>\",\"PeriodicalId\":17160,\"journal\":{\"name\":\"Journal of Sustainable Metallurgy\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40831-024-00852-z\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00852-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
控制钢液中的硫和氧对生产高洁净度稀土钢至关重要。本研究基于提出的高碱度精炼渣脱硫、Si-Mn 脱氧、Al 增强脱氧和稀土 Ce 合金一体化工艺,尝试研究稀土 Ce 含量对从废钢中通过改性稀土夹杂物提纯 7CrSiMnMoV 钢的影响。结果表明,稀土夹杂物的演化机理为 25% Al2O3⋅25% MgO⋅50% Ce2O3 → 25% Al2O3⋅75% Ce2O3, 12.5% Al2O3⋅MnS⋅Ce2O2S → Ce2O3, Ce2O2S → Ce2S3, Ce2O2S → (Mn Ce)2S3, Ce2O2S,稀土 Ce 添加量分别为 0.009%、0.012% 和 0.100%。而稀土 Ce 可以通过控制稀土 Ce 的添加量,形成 M1-Ce2O3(M1 为 Al、Mg 等)和 M2-Ce2SO2(M2 为 Ca、Mn 等)稀土夹杂物,从而提高钢液的洁净度;稀土 Ce 含量为 0.012%时,氧浓度和硫浓度可分别达到 0.0031%和 0.0026%。图解 摘要利用废钢生产 7CrSiMnMoV 稀土钢,采用高碱度精炼渣脱硫、Si-Mn 脱氧、Al 增强脱氧、稀土 Ce 合金净化钢液的综合工艺。通过改性稀土夹杂物净化 7CrSiMnMoV 稀土钢液。通过控制稀土 Ce 的添加量,形成 M-Ce2O3(M 为 Al、Mg 等)和 M-Ce2SO2(M 为 Ca、Mn 等)稀土夹杂物,稀土 Ce 含量为 0.012%时,氧和硫的浓度可分别达到 0.0031%和 0.0026%,从而提高钢液的洁净度。
Purifying 7CrSiMnMoV Steel from Scrap Modified with Rare Earth Cerium Alloying
It is crucial to control the sulfur and oxygen in the steel liquid to produce high-cleanliness rare earth steel. This study attempted to investigate the effect of rare earth Ce content on purifying the produced 7CrSiMnMoV steel from scrap steel by modified rare earth inclusions based on a proposed integrated process of high-alkalinity refining slag desulfurization, Si–Mn deoxidation, Al-enhanced deoxidation, and rare earth Ce alloying. The results show that the evolution mechanism of rare earth inclusions is 25% Al2O3⋅25% MgO⋅50% Ce2O3 → 25% Al2O3⋅75% Ce2O3, 12.5% Al2O3⋅MnS⋅Ce2O2S → Ce2O3, Ce2O2S → Ce2S3, Ce2O2S → (Mn Ce)2S3, Ce2O2S, with the rare earth Ce-added content of 0.009%, 0.012%, and 0.100%, respectively. And rare earth Ce can improve the cleanliness of steel liquid by controlling the rare earth Ce-added content to form the M1-Ce2O3 (M1 is Al, Mg, etc.) and M2-Ce2SO2 (M2 is Ca, Mn, etc.) rare earth inclusions; the oxygen and sulfur concentrations can reach 0.0031% and 0.0026%, respectively, with a rare earth Ce content of 0.012%. However, excessive amounts of rare earth Ce could deteriorate the cleanliness of steel liquid.
Graphical Abstract
To produce 7CrSiMnMoV rare earth steel by scrap steel based on an integrated process of high-alkalinity refining slag desulfurization, Si–Mn deoxidation, Al-enhanced deoxidation, and rare earth Ce alloying and purifying steel liquid.Purifying 7CrSiMnMoV rare earth steel liquid by modified rare earth inclusion.Rare earth Ce can improve the cleanliness of steel liquid by controlling the rare earth Ce-added content to form M-Ce2O3 (M is Al, Mg, etc.) and M-Ce2SO2 (M is Ca, Mn, etc.) rare earth inclusions; the oxygen and sulfur concentrations can reach 0.0031% and 0.0026%, respectively, with a rare earth Ce content of 0.012%.
期刊介绍:
Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.