非线性矩阵方程 $$\mathcal {X}=\mathcal {L}_1+\sum _{i=1}^{m}\mathcal {M}_i^*\mathbb 的定点结果的有效性{S}(\mathcal {X})\mathcal {M}_i$ 和 $$\mathcal {X}=\mathcal {L}_2+sum _{i=1}^{m}\mathcal {M}_i^*\mathbb {T}(\mathcal {X})\mathcal {M}_i$

Naveen Kumar Pichaimani, Ramesh Kumar Devaraj
{"title":"非线性矩阵方程 $$\\mathcal {X}=\\mathcal {L}_1+\\sum _{i=1}^{m}\\mathcal {M}_i^*\\mathbb 的定点结果的有效性{S}(\\mathcal {X})\\mathcal {M}_i$ 和 $$\\mathcal {X}=\\mathcal {L}_2+sum _{i=1}^{m}\\mathcal {M}_i^*\\mathbb {T}(\\mathcal {X})\\mathcal {M}_i$","authors":"Naveen Kumar Pichaimani, Ramesh Kumar Devaraj","doi":"10.1007/s13226-024-00606-3","DOIUrl":null,"url":null,"abstract":"<p>We shall give a notion to obtain some adequate conditions for the existence and uniqueness of a positive definite common solution to a pair of non-linear matrix equations. In pursuit of this, our interest lies in presenting some invigorating results containing altering distance functions and control functions in metric spaces. Using these results, we employ some firm conditions for the existence and uniqueness of a positive definite common solution to the pair of non-linear matrix equations. We also figure out a systematic applicable area of our findings. Eventually, we give precise examples to assert one of the prominent results with a numerical approximation of convergence of iterated sequence using a diagram.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effectualness of the fixed point results on the nonlinear matrix equations $$\\\\mathcal {X}=\\\\mathcal {L}_1+\\\\sum _{i=1}^{m}\\\\mathcal {M}_i^*\\\\mathbb {S}(\\\\mathcal {X})\\\\mathcal {M}_i$$ and $$\\\\mathcal {X}=\\\\mathcal {L}_2+\\\\sum _{i=1}^{m}\\\\mathcal {M}_i^*\\\\mathbb {T}(\\\\mathcal {X})\\\\mathcal {M}_i$$\",\"authors\":\"Naveen Kumar Pichaimani, Ramesh Kumar Devaraj\",\"doi\":\"10.1007/s13226-024-00606-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We shall give a notion to obtain some adequate conditions for the existence and uniqueness of a positive definite common solution to a pair of non-linear matrix equations. In pursuit of this, our interest lies in presenting some invigorating results containing altering distance functions and control functions in metric spaces. Using these results, we employ some firm conditions for the existence and uniqueness of a positive definite common solution to the pair of non-linear matrix equations. We also figure out a systematic applicable area of our findings. Eventually, we give precise examples to assert one of the prominent results with a numerical approximation of convergence of iterated sequence using a diagram.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00606-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00606-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将给出一个概念,以获得一对非线性矩阵方程的正定公共解的存在性和唯一性的一些充分条件。为此,我们的兴趣在于提出一些令人振奋的结果,其中包含度量空间中的改变距离函数和控制函数。利用这些结果,我们为一对非线性矩阵方程的正定公共解的存在性和唯一性提出了一些可靠的条件。我们还找出了我们的研究成果的系统应用领域。最后,我们给出了精确的示例,通过使用图表对迭代序列的收敛性进行数值逼近来论证其中一个突出的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effectualness of the fixed point results on the nonlinear matrix equations $$\mathcal {X}=\mathcal {L}_1+\sum _{i=1}^{m}\mathcal {M}_i^*\mathbb {S}(\mathcal {X})\mathcal {M}_i$$ and $$\mathcal {X}=\mathcal {L}_2+\sum _{i=1}^{m}\mathcal {M}_i^*\mathbb {T}(\mathcal {X})\mathcal {M}_i$$

Effectualness of the fixed point results on the nonlinear matrix equations $$\mathcal {X}=\mathcal {L}_1+\sum _{i=1}^{m}\mathcal {M}_i^*\mathbb {S}(\mathcal {X})\mathcal {M}_i$$ and $$\mathcal {X}=\mathcal {L}_2+\sum _{i=1}^{m}\mathcal {M}_i^*\mathbb {T}(\mathcal {X})\mathcal {M}_i$$

We shall give a notion to obtain some adequate conditions for the existence and uniqueness of a positive definite common solution to a pair of non-linear matrix equations. In pursuit of this, our interest lies in presenting some invigorating results containing altering distance functions and control functions in metric spaces. Using these results, we employ some firm conditions for the existence and uniqueness of a positive definite common solution to the pair of non-linear matrix equations. We also figure out a systematic applicable area of our findings. Eventually, we give precise examples to assert one of the prominent results with a numerical approximation of convergence of iterated sequence using a diagram.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信