{"title":"基于 TSM 模型的小试样断裂韧性估算","authors":"Jianhua Pan, Yu Ding","doi":"10.1134/S0025654424602635","DOIUrl":null,"url":null,"abstract":"<p>Fracture toughness is an important parameter in industry for measuring material properties. In order to obtain the fracture toughness of standard thickness materials it is necessary to go through a large number of fracture toughness experiments, but the cost is high. And in practice there are not that many eligible experimental materials to be able to conduct the experiment. If fracture toughness data are obtained for small specimens. Fracture toughness data for large and thick specimens can be predicted by the toughness scaling model (TSM). The relationship between fracture toughness based on Weibull’s principle of stress equivalence. Can effectively make up for the defect of the specimen’s own constraint degree is insufficient. The parameters of the Toughness scaling model are decisive for the accuracy of the predicted fracture toughness data. The traditional TSM calibration procedure is complex. Using a simplified Toughness scaling model can reduce many arithmetic steps in engineering. And this method was applied to calibrate the parameters for three materials. It was found that the predicted probability of failure-fracture toughness curves at a crack tip of 0.02 mm–0.03 mm for the low constraint specimens were informative although there was some error. Also, the linear relationship between the magnitude of the Weibull stress and the fracture toughness is independent of the material type. It is only related to the magnitude of parameter m.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Fracture Toughness with Small Specimens Based on TSM Model\",\"authors\":\"Jianhua Pan, Yu Ding\",\"doi\":\"10.1134/S0025654424602635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fracture toughness is an important parameter in industry for measuring material properties. In order to obtain the fracture toughness of standard thickness materials it is necessary to go through a large number of fracture toughness experiments, but the cost is high. And in practice there are not that many eligible experimental materials to be able to conduct the experiment. If fracture toughness data are obtained for small specimens. Fracture toughness data for large and thick specimens can be predicted by the toughness scaling model (TSM). The relationship between fracture toughness based on Weibull’s principle of stress equivalence. Can effectively make up for the defect of the specimen’s own constraint degree is insufficient. The parameters of the Toughness scaling model are decisive for the accuracy of the predicted fracture toughness data. The traditional TSM calibration procedure is complex. Using a simplified Toughness scaling model can reduce many arithmetic steps in engineering. And this method was applied to calibrate the parameters for three materials. It was found that the predicted probability of failure-fracture toughness curves at a crack tip of 0.02 mm–0.03 mm for the low constraint specimens were informative although there was some error. Also, the linear relationship between the magnitude of the Weibull stress and the fracture toughness is independent of the material type. It is only related to the magnitude of parameter m.</p>\",\"PeriodicalId\":697,\"journal\":{\"name\":\"Mechanics of Solids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0025654424602635\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424602635","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要断裂韧性是工业领域衡量材料性能的一个重要参数。为了获得标准厚度材料的断裂韧性,必须进行大量的断裂韧性实验,但成本很高。而在实践中,能够进行实验的合格实验材料并不多。如果获得的是小试样的断裂韧性数据。大型和厚型试样的断裂韧性数据可以通过韧性标度模型(TSM)来预测。基于威布尔应力等效原理的断裂韧性之间的关系。可有效弥补试样自身约束程度不足的缺陷。韧性标定模型的参数对预测断裂韧性数据的准确性起着决定性作用。传统的 TSM 校准程序非常复杂。使用简化的韧性比例模型可以减少工程中的许多运算步骤。我们采用这种方法校准了三种材料的参数。结果发现,低约束试样在 0.02 毫米至 0.03 毫米裂纹尖端处的失效概率-断裂韧性曲线的预测结果虽然存在一定误差,但仍具有参考价值。此外,Weibull 应力大小与断裂韧性之间的线性关系与材料类型无关。它只与参数 m 的大小有关。
Estimation of Fracture Toughness with Small Specimens Based on TSM Model
Fracture toughness is an important parameter in industry for measuring material properties. In order to obtain the fracture toughness of standard thickness materials it is necessary to go through a large number of fracture toughness experiments, but the cost is high. And in practice there are not that many eligible experimental materials to be able to conduct the experiment. If fracture toughness data are obtained for small specimens. Fracture toughness data for large and thick specimens can be predicted by the toughness scaling model (TSM). The relationship between fracture toughness based on Weibull’s principle of stress equivalence. Can effectively make up for the defect of the specimen’s own constraint degree is insufficient. The parameters of the Toughness scaling model are decisive for the accuracy of the predicted fracture toughness data. The traditional TSM calibration procedure is complex. Using a simplified Toughness scaling model can reduce many arithmetic steps in engineering. And this method was applied to calibrate the parameters for three materials. It was found that the predicted probability of failure-fracture toughness curves at a crack tip of 0.02 mm–0.03 mm for the low constraint specimens were informative although there was some error. Also, the linear relationship between the magnitude of the Weibull stress and the fracture toughness is independent of the material type. It is only related to the magnitude of parameter m.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.