{"title":"局部紧凑局部的分类局部范畴及其在无穷公理中的应用(海报)","authors":"Christopher Francis Townsend","doi":"arxiv-2406.01573","DOIUrl":null,"url":null,"abstract":"For an internal category $\\mathbb{C}$ in a cartesian category $\\mathcal{C}$\nwe define, naturally in objects $X$ of $\\mathcal{C}$, $Prin_{\\mathbb{C}}(X)$.\nThis is a category whose objects are principal $c \\mathbb{C}$-bundles over $X$\nand whose morphisms are principal $c(\\mathbb{C}^{\\uparrow})$-bundles. Here\n$c(\\_)$ denotes taking the core groupoid of a category (same objects but only\nisomorphisms as morphisms) and $\\mathbb{C}^{\\uparrow}$ is the arrow category of\n$\\mathbb{C}$ (objects morphisms, morphisms commuting squares). We show that $X\n\\mapsto Prin_{\\mathbb{C}}(X)$ is a stack of categories and call stacks of this\nsort lax-geometric. We then provide two sufficient conditions for a stack to be\nlax-geometric and use them to prove that the pseudo-functor $X \\mapsto\n\\mathbf{LK}_{Sh(X)}$ on the category of locales $\\mathbf{Loc}$ is a\nlax-geometric stack. Here $\\mathbf{LK}_{Sh(X)}$ is the category of locally\ncompact locales in the topos of sheaves over $X$, $Sh(X)$. Therefore there\nexists a localic category $\\mathbb{C}_{\\mathbf{LK}}$ such that\n$\\mathbf{LK}_{Sh(X)} \\simeq Prin_{\\mathbb{C}_{\\mathbf{LK}}}(X)$ naturally for\nevery locale $X$. We then show how this can be used to give a new localic characterisation of\nthe Axiom of Infinity.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A classifying localic category for locally compact locales with application to the Axiom of Infinity (poster)\",\"authors\":\"Christopher Francis Townsend\",\"doi\":\"arxiv-2406.01573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an internal category $\\\\mathbb{C}$ in a cartesian category $\\\\mathcal{C}$\\nwe define, naturally in objects $X$ of $\\\\mathcal{C}$, $Prin_{\\\\mathbb{C}}(X)$.\\nThis is a category whose objects are principal $c \\\\mathbb{C}$-bundles over $X$\\nand whose morphisms are principal $c(\\\\mathbb{C}^{\\\\uparrow})$-bundles. Here\\n$c(\\\\_)$ denotes taking the core groupoid of a category (same objects but only\\nisomorphisms as morphisms) and $\\\\mathbb{C}^{\\\\uparrow}$ is the arrow category of\\n$\\\\mathbb{C}$ (objects morphisms, morphisms commuting squares). We show that $X\\n\\\\mapsto Prin_{\\\\mathbb{C}}(X)$ is a stack of categories and call stacks of this\\nsort lax-geometric. We then provide two sufficient conditions for a stack to be\\nlax-geometric and use them to prove that the pseudo-functor $X \\\\mapsto\\n\\\\mathbf{LK}_{Sh(X)}$ on the category of locales $\\\\mathbf{Loc}$ is a\\nlax-geometric stack. Here $\\\\mathbf{LK}_{Sh(X)}$ is the category of locally\\ncompact locales in the topos of sheaves over $X$, $Sh(X)$. Therefore there\\nexists a localic category $\\\\mathbb{C}_{\\\\mathbf{LK}}$ such that\\n$\\\\mathbf{LK}_{Sh(X)} \\\\simeq Prin_{\\\\mathbb{C}_{\\\\mathbf{LK}}}(X)$ naturally for\\nevery locale $X$. We then show how this can be used to give a new localic characterisation of\\nthe Axiom of Infinity.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.01573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.01573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A classifying localic category for locally compact locales with application to the Axiom of Infinity (poster)
For an internal category $\mathbb{C}$ in a cartesian category $\mathcal{C}$
we define, naturally in objects $X$ of $\mathcal{C}$, $Prin_{\mathbb{C}}(X)$.
This is a category whose objects are principal $c \mathbb{C}$-bundles over $X$
and whose morphisms are principal $c(\mathbb{C}^{\uparrow})$-bundles. Here
$c(\_)$ denotes taking the core groupoid of a category (same objects but only
isomorphisms as morphisms) and $\mathbb{C}^{\uparrow}$ is the arrow category of
$\mathbb{C}$ (objects morphisms, morphisms commuting squares). We show that $X
\mapsto Prin_{\mathbb{C}}(X)$ is a stack of categories and call stacks of this
sort lax-geometric. We then provide two sufficient conditions for a stack to be
lax-geometric and use them to prove that the pseudo-functor $X \mapsto
\mathbf{LK}_{Sh(X)}$ on the category of locales $\mathbf{Loc}$ is a
lax-geometric stack. Here $\mathbf{LK}_{Sh(X)}$ is the category of locally
compact locales in the topos of sheaves over $X$, $Sh(X)$. Therefore there
exists a localic category $\mathbb{C}_{\mathbf{LK}}$ such that
$\mathbf{LK}_{Sh(X)} \simeq Prin_{\mathbb{C}_{\mathbf{LK}}}(X)$ naturally for
every locale $X$. We then show how this can be used to give a new localic characterisation of
the Axiom of Infinity.