$$\mathbb {R}^{N}$ 中双谐方程正解的存在性

IF 1.2 3区 数学 Q1 MATHEMATICS
Wenbo Wang, Jixiang Ma, Jianwen Zhou
{"title":"$$\\mathbb {R}^{N}$ 中双谐方程正解的存在性","authors":"Wenbo Wang,&nbsp;Jixiang Ma,&nbsp;Jianwen Zhou","doi":"10.1007/s43034-024-00362-9","DOIUrl":null,"url":null,"abstract":"<div><p>This article considers the biharmonic equation </p><div><div><span>$$\\begin{aligned} \\Delta ^{2}u=K(x)f(u)\\quad \\text {in }~\\mathbb { R}^{N}. \\end{aligned}$$</span></div></div><p>Under suitable assumptions, the existence of positive solutions is obtained. The methods used here contain the integral operator and the Schauder fixed point theory. Since the form of fundamental solution of <span>\\(\\Delta ^{2}u=0\\)</span> in <span>\\(\\mathbb {R}^{N}\\)</span> depends on <i>N</i>, we divide our discussions into three cases as (a) <span>\\(N=2\\)</span>; (b) <span>\\(N=4\\)</span>; (c) <span>\\(N&gt;2\\)</span> but <span>\\(N\\ne 4\\)</span>. The fundamental solution of <span>\\(\\Delta ^{2}\\)</span> plays an essential role in our results.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of positive solutions to the biharmonic equations in \\\\(\\\\mathbb {R}^{N}\\\\)\",\"authors\":\"Wenbo Wang,&nbsp;Jixiang Ma,&nbsp;Jianwen Zhou\",\"doi\":\"10.1007/s43034-024-00362-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article considers the biharmonic equation </p><div><div><span>$$\\\\begin{aligned} \\\\Delta ^{2}u=K(x)f(u)\\\\quad \\\\text {in }~\\\\mathbb { R}^{N}. \\\\end{aligned}$$</span></div></div><p>Under suitable assumptions, the existence of positive solutions is obtained. The methods used here contain the integral operator and the Schauder fixed point theory. Since the form of fundamental solution of <span>\\\\(\\\\Delta ^{2}u=0\\\\)</span> in <span>\\\\(\\\\mathbb {R}^{N}\\\\)</span> depends on <i>N</i>, we divide our discussions into three cases as (a) <span>\\\\(N=2\\\\)</span>; (b) <span>\\\\(N=4\\\\)</span>; (c) <span>\\\\(N&gt;2\\\\)</span> but <span>\\\\(N\\\\ne 4\\\\)</span>. The fundamental solution of <span>\\\\(\\\\Delta ^{2}\\\\)</span> plays an essential role in our results.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-024-00362-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00362-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究的是双谐方程 $$\begin{aligned}\Delta ^{2}u=K(x)f(u)\quad \text {in }~\mathbb { R}^{N}.\end{aligned}$$在合适的假设条件下,可以得到正解的存在。这里使用的方法包含积分算子和 Schauder 定点理论。由于\(\mathbb {R}^{N}\) 中\(\Delta ^{2}u=0\)的基本解的形式取决于 N,我们将讨论分为三种情况:(a)\(N=2\);(b)\(N=4\);(c)\(N>2\) but\(Nne 4\)。在我们的结果中,\(\Delta ^{2}\)的基本解起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of positive solutions to the biharmonic equations in \(\mathbb {R}^{N}\)

This article considers the biharmonic equation

$$\begin{aligned} \Delta ^{2}u=K(x)f(u)\quad \text {in }~\mathbb { R}^{N}. \end{aligned}$$

Under suitable assumptions, the existence of positive solutions is obtained. The methods used here contain the integral operator and the Schauder fixed point theory. Since the form of fundamental solution of \(\Delta ^{2}u=0\) in \(\mathbb {R}^{N}\) depends on N, we divide our discussions into three cases as (a) \(N=2\); (b) \(N=4\); (c) \(N>2\) but \(N\ne 4\). The fundamental solution of \(\Delta ^{2}\) plays an essential role in our results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信