群的最大杯长和收缩面积的 2-复数的收缩不等式

Eugenio Borghini
{"title":"群的最大杯长和收缩面积的 2-复数的收缩不等式","authors":"Eugenio Borghini","doi":"10.1007/s12220-024-01696-5","DOIUrl":null,"url":null,"abstract":"<p>We extend a systolic inequality of Guth for Riemannian manifolds of maximal <span>\\({\\mathbb {Z}}_2\\)</span> cup-length to piecewise Riemannian complexes of dimension 2. As a consequence we improve the previous best universal lower bound for the systolic area of groups for a large class of groups, including free abelian and surface groups, most of irreducible 3-manifold groups, non-free Artin groups and Coxeter groups or, more generally, groups containing an element of order 2.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Systolic Inequality for 2-Complexes of Maximal Cup-Length and Systolic Area of Groups\",\"authors\":\"Eugenio Borghini\",\"doi\":\"10.1007/s12220-024-01696-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We extend a systolic inequality of Guth for Riemannian manifolds of maximal <span>\\\\({\\\\mathbb {Z}}_2\\\\)</span> cup-length to piecewise Riemannian complexes of dimension 2. As a consequence we improve the previous best universal lower bound for the systolic area of groups for a large class of groups, including free abelian and surface groups, most of irreducible 3-manifold groups, non-free Artin groups and Coxeter groups or, more generally, groups containing an element of order 2.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01696-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01696-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将古斯关于最大杯长的黎曼流形的收缩不等式扩展到维数为 2 的片状黎曼复数。因此,我们改进了之前对一大类群的群收缩面积的最佳普遍下界,这些群包括自由无性群和面群、大多数不可还原的 3-manifold群、非自由阿汀群和 Coxeter 群,或者更广泛地说,包含阶数为 2 的元素的群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Systolic Inequality for 2-Complexes of Maximal Cup-Length and Systolic Area of Groups

We extend a systolic inequality of Guth for Riemannian manifolds of maximal \({\mathbb {Z}}_2\) cup-length to piecewise Riemannian complexes of dimension 2. As a consequence we improve the previous best universal lower bound for the systolic area of groups for a large class of groups, including free abelian and surface groups, most of irreducible 3-manifold groups, non-free Artin groups and Coxeter groups or, more generally, groups containing an element of order 2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信