局部域上的哈代和哈代-利特尔伍德-波利亚算子及其换元子

Pub Date : 2024-06-03 DOI:10.1007/s10998-024-00589-y
Biswaranjan Behera
{"title":"局部域上的哈代和哈代-利特尔伍德-波利亚算子及其换元子","authors":"Biswaranjan Behera","doi":"10.1007/s10998-024-00589-y","DOIUrl":null,"url":null,"abstract":"<p>We introduce the Hardy and Hardy–Littlewood–Pólya operators on local fields and show that they are bounded on weighted Lebesgue spaces with power weights. Moreover, we compute the precise norms of these operators on these spaces. Further, we prove the boundedness of the commutators generated by these operators and functions with central mean oscillation on Herz spaces, and in particular, on the weighted Lebesgue spaces.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardy and Hardy–Littlewood–Pólya operators and their commutators on local fields\",\"authors\":\"Biswaranjan Behera\",\"doi\":\"10.1007/s10998-024-00589-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce the Hardy and Hardy–Littlewood–Pólya operators on local fields and show that they are bounded on weighted Lebesgue spaces with power weights. Moreover, we compute the precise norms of these operators on these spaces. Further, we prove the boundedness of the commutators generated by these operators and functions with central mean oscillation on Herz spaces, and in particular, on the weighted Lebesgue spaces.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-024-00589-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00589-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了局部场上的哈代和哈代-利特尔伍德-波利亚算子,并证明它们在带幂权的加权勒贝格空间上是有界的。此外,我们还计算了这些算子在这些空间上的精确规范。此外,我们还证明了这些算子所产生的换元的有界性,以及在赫兹空间,特别是在加权勒贝格空间上具有中心平均振荡的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Hardy and Hardy–Littlewood–Pólya operators and their commutators on local fields

We introduce the Hardy and Hardy–Littlewood–Pólya operators on local fields and show that they are bounded on weighted Lebesgue spaces with power weights. Moreover, we compute the precise norms of these operators on these spaces. Further, we prove the boundedness of the commutators generated by these operators and functions with central mean oscillation on Herz spaces, and in particular, on the weighted Lebesgue spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信