利用物理信息机器学习对超早期电池原型进行非破坏性降解模式解耦验证

Shengyu Tao, Mengtian Zhang, Zixi Zhao, Haoyang Li, Ruifei Ma, Yunhong Che, Xin Sun, Lin Su, Xiangyu Chen, Zihao Zhou, Heng Chang, Tingwei Cao, Xiao Xiao, Yaojun Liu, Wenjun Yu, Zhongling Xu, Yang Li, Han Hao, Xuan Zhang, Xiaosong Hu, Guangmin ZHou
{"title":"利用物理信息机器学习对超早期电池原型进行非破坏性降解模式解耦验证","authors":"Shengyu Tao, Mengtian Zhang, Zixi Zhao, Haoyang Li, Ruifei Ma, Yunhong Che, Xin Sun, Lin Su, Xiangyu Chen, Zihao Zhou, Heng Chang, Tingwei Cao, Xiao Xiao, Yaojun Liu, Wenjun Yu, Zhongling Xu, Yang Li, Han Hao, Xuan Zhang, Xiaosong Hu, Guangmin ZHou","doi":"arxiv-2406.00276","DOIUrl":null,"url":null,"abstract":"Manufacturing complexities and uncertainties have impeded the transition from\nmaterial prototypes to commercial batteries, making prototype verification\ncritical to quality assessment. A fundamental challenge involves deciphering\nintertwined chemical processes to characterize degradation patterns and their\nquantitative relationship with battery performance. Here we show that a\nphysics-informed machine learning approach can quantify and visualize\ntemporally resolved losses concerning thermodynamics and kinetics only using\nelectric signals. Our method enables non-destructive degradation pattern\ncharacterization, expediting temperature-adaptable predictions of entire\nlifetime trajectories, rather than end-of-life points. The verification speed\nis 25 times faster yet maintaining 95.1% accuracy across temperatures. Such\nadvances facilitate more sustainable management of defective prototypes before\nmassive production, establishing a 19.76 billion USD scrap material recycling\nmarket by 2060 in China. By incorporating stepwise charge acceptance as a\nmeasure of the initial manufacturing variability of normally identical\nbatteries, we can immediately identify long-term degradation variations. We\nattribute the predictive power to interpreting machine learning insights using\nmaterial-agnostic featurization taxonomy for degradation pattern decoupling.\nOur findings offer new possibilities for dynamic system analysis, such as\nbattery prototype degradation, demonstrating that complex pattern evolutions\ncan be accurately predicted in a non-destructive and data-driven fashion by\nintegrating physics-informed machine learning.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-destructive Degradation Pattern Decoupling for Ultra-early Battery Prototype Verification Using Physics-informed Machine Learning\",\"authors\":\"Shengyu Tao, Mengtian Zhang, Zixi Zhao, Haoyang Li, Ruifei Ma, Yunhong Che, Xin Sun, Lin Su, Xiangyu Chen, Zihao Zhou, Heng Chang, Tingwei Cao, Xiao Xiao, Yaojun Liu, Wenjun Yu, Zhongling Xu, Yang Li, Han Hao, Xuan Zhang, Xiaosong Hu, Guangmin ZHou\",\"doi\":\"arxiv-2406.00276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manufacturing complexities and uncertainties have impeded the transition from\\nmaterial prototypes to commercial batteries, making prototype verification\\ncritical to quality assessment. A fundamental challenge involves deciphering\\nintertwined chemical processes to characterize degradation patterns and their\\nquantitative relationship with battery performance. Here we show that a\\nphysics-informed machine learning approach can quantify and visualize\\ntemporally resolved losses concerning thermodynamics and kinetics only using\\nelectric signals. Our method enables non-destructive degradation pattern\\ncharacterization, expediting temperature-adaptable predictions of entire\\nlifetime trajectories, rather than end-of-life points. The verification speed\\nis 25 times faster yet maintaining 95.1% accuracy across temperatures. Such\\nadvances facilitate more sustainable management of defective prototypes before\\nmassive production, establishing a 19.76 billion USD scrap material recycling\\nmarket by 2060 in China. By incorporating stepwise charge acceptance as a\\nmeasure of the initial manufacturing variability of normally identical\\nbatteries, we can immediately identify long-term degradation variations. We\\nattribute the predictive power to interpreting machine learning insights using\\nmaterial-agnostic featurization taxonomy for degradation pattern decoupling.\\nOur findings offer new possibilities for dynamic system analysis, such as\\nbattery prototype degradation, demonstrating that complex pattern evolutions\\ncan be accurately predicted in a non-destructive and data-driven fashion by\\nintegrating physics-informed machine learning.\",\"PeriodicalId\":501065,\"journal\":{\"name\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.00276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.00276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

制造的复杂性和不确定性阻碍了从材料原型到商用电池的过渡,因此原型验证对于质量评估至关重要。一个根本性的挑战是破解相互交织的化学过程,以描述降解模式及其与电池性能的定量关系。在这里,我们展示了一种物理信息机器学习方法,该方法仅使用电信号就能量化和可视化有关热力学和动力学的时间分辨损失。我们的方法实现了非破坏性降解模式识别,加快了对整个寿命轨迹而不是寿命终点的温度适应性预测。验证速度提高了 25 倍,同时在不同温度下保持 95.1% 的准确率。这种进步有助于在大规模生产前对有缺陷的原型进行更可持续的管理,到 2060 年,中国将形成 197.6 亿美元的废旧材料回收市场。通过将逐步充电接受度作为衡量正常相同电池初始制造变异性的指标,我们可以立即识别长期降解变异。我们的研究结果为电池原型降解等动态系统分析提供了新的可能性,证明了通过整合物理信息机器学习,可以以非破坏性和数据驱动的方式准确预测复杂的模式演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-destructive Degradation Pattern Decoupling for Ultra-early Battery Prototype Verification Using Physics-informed Machine Learning
Manufacturing complexities and uncertainties have impeded the transition from material prototypes to commercial batteries, making prototype verification critical to quality assessment. A fundamental challenge involves deciphering intertwined chemical processes to characterize degradation patterns and their quantitative relationship with battery performance. Here we show that a physics-informed machine learning approach can quantify and visualize temporally resolved losses concerning thermodynamics and kinetics only using electric signals. Our method enables non-destructive degradation pattern characterization, expediting temperature-adaptable predictions of entire lifetime trajectories, rather than end-of-life points. The verification speed is 25 times faster yet maintaining 95.1% accuracy across temperatures. Such advances facilitate more sustainable management of defective prototypes before massive production, establishing a 19.76 billion USD scrap material recycling market by 2060 in China. By incorporating stepwise charge acceptance as a measure of the initial manufacturing variability of normally identical batteries, we can immediately identify long-term degradation variations. We attribute the predictive power to interpreting machine learning insights using material-agnostic featurization taxonomy for degradation pattern decoupling. Our findings offer new possibilities for dynamic system analysis, such as battery prototype degradation, demonstrating that complex pattern evolutions can be accurately predicted in a non-destructive and data-driven fashion by integrating physics-informed machine learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信