{"title":"映射单元和二元$infty$类","authors":"Takeshi Torii","doi":"arxiv-2406.00223","DOIUrl":null,"url":null,"abstract":"In this paper we give an example of duoidal $\\infty$-categories. We introduce\nmap $\\mathcal{O}$-monoidales in an $\\mathcal{O}$-monoidal $(\\infty,2)$-category\nfor an $\\infty$-operad $\\mathcal{O}^{\\otimes}$. We show that the endomorphism\nmapping $\\infty$-category of a map $\\mathcal{O}$-monoidale is a coCartesian\n$(\\Delta^{\\rm op},\\mathcal{O})$-duoidal $\\infty$-category. After that, we\nintroduce a convolution product on the mapping $\\infty$-category from an\n$\\mathcal{O}$-comonoidale to an $\\mathcal{O}$-monoidale. We show that the\n$\\mathcal{O}$-monoidal structure on the duoidal endomorphism mapping\n$\\infty$-category of a map $\\mathcal{O}$-monoidale is equivalent to the\nconvolution product on the mapping $\\infty$-category from the dual\n$\\mathcal{O}$-comonoidale to the map $\\mathcal{O}$-monoidale.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Map monoidales and duoidal $\\\\infty$-categories\",\"authors\":\"Takeshi Torii\",\"doi\":\"arxiv-2406.00223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we give an example of duoidal $\\\\infty$-categories. We introduce\\nmap $\\\\mathcal{O}$-monoidales in an $\\\\mathcal{O}$-monoidal $(\\\\infty,2)$-category\\nfor an $\\\\infty$-operad $\\\\mathcal{O}^{\\\\otimes}$. We show that the endomorphism\\nmapping $\\\\infty$-category of a map $\\\\mathcal{O}$-monoidale is a coCartesian\\n$(\\\\Delta^{\\\\rm op},\\\\mathcal{O})$-duoidal $\\\\infty$-category. After that, we\\nintroduce a convolution product on the mapping $\\\\infty$-category from an\\n$\\\\mathcal{O}$-comonoidale to an $\\\\mathcal{O}$-monoidale. We show that the\\n$\\\\mathcal{O}$-monoidal structure on the duoidal endomorphism mapping\\n$\\\\infty$-category of a map $\\\\mathcal{O}$-monoidale is equivalent to the\\nconvolution product on the mapping $\\\\infty$-category from the dual\\n$\\\\mathcal{O}$-comonoidale to the map $\\\\mathcal{O}$-monoidale.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.00223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.00223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we give an example of duoidal $\infty$-categories. We introduce
map $\mathcal{O}$-monoidales in an $\mathcal{O}$-monoidal $(\infty,2)$-category
for an $\infty$-operad $\mathcal{O}^{\otimes}$. We show that the endomorphism
mapping $\infty$-category of a map $\mathcal{O}$-monoidale is a coCartesian
$(\Delta^{\rm op},\mathcal{O})$-duoidal $\infty$-category. After that, we
introduce a convolution product on the mapping $\infty$-category from an
$\mathcal{O}$-comonoidale to an $\mathcal{O}$-monoidale. We show that the
$\mathcal{O}$-monoidal structure on the duoidal endomorphism mapping
$\infty$-category of a map $\mathcal{O}$-monoidale is equivalent to the
convolution product on the mapping $\infty$-category from the dual
$\mathcal{O}$-comonoidale to the map $\mathcal{O}$-monoidale.