Shi-sen Li, Xi-min Zang, Ji-lin Chen, Jie Yang, Yu-an Jing, Zhi-ying Wang, Ling-zhong Kong
{"title":"ZG13Cr9Mo1VNbN 不锈钢与铬铁矿砂之间的界面行为","authors":"Shi-sen Li, Xi-min Zang, Ji-lin Chen, Jie Yang, Yu-an Jing, Zhi-ying Wang, Ling-zhong Kong","doi":"10.1007/s42243-024-01218-1","DOIUrl":null,"url":null,"abstract":"<p>To elucidate the formation mechanisms of burn-on sand and metal penetration during sand casting, some laboratory experiments were carried out at different temperatures (1813, 1833, 1853, and 1873 K) and holding time (20, 40, 60, and 90 min) to simulate the interaction between ZG13Cr9Mo1VNbN stainless steel and chromite sand. The results demonstrate that the defects primarily consist of a mixture of the liquid phase, chromite, and metal. The main components of the liquid phase are SiO<sub>2</sub>, MnO, MgO, Cr<sub>2</sub>O<sub>3</sub>, FeO, and Al<sub>2</sub>O<sub>3</sub>, and the formation of Cr<sub>2</sub>O<sub>3</sub> through interfacial redox reactions has been discovered. The presence of a liquid phase plays a pivotal role in influencing burn-on sand and metal penetration. Interface reactions are prioritized, with burn-on sand maintaining a predominant influence. As the liquid phase quantity within the sand escalates, there is a corresponding incremental rise in the incidence of metal penetration. Even a minimal presence of the silicon element in steel can impact the liquid phase’s formation. Moreover, the decomposition or dissolution of chromite sand is a significant factor in the development of burn-on sand and metal penetration. Thus, a thorough investigation into the conditions and contributing factors of this phenomenon is essential for its effective management and mitigation.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":"52 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial behaviors between ZG13Cr9Mo1VNbN stainless steel and chromite sand\",\"authors\":\"Shi-sen Li, Xi-min Zang, Ji-lin Chen, Jie Yang, Yu-an Jing, Zhi-ying Wang, Ling-zhong Kong\",\"doi\":\"10.1007/s42243-024-01218-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To elucidate the formation mechanisms of burn-on sand and metal penetration during sand casting, some laboratory experiments were carried out at different temperatures (1813, 1833, 1853, and 1873 K) and holding time (20, 40, 60, and 90 min) to simulate the interaction between ZG13Cr9Mo1VNbN stainless steel and chromite sand. The results demonstrate that the defects primarily consist of a mixture of the liquid phase, chromite, and metal. The main components of the liquid phase are SiO<sub>2</sub>, MnO, MgO, Cr<sub>2</sub>O<sub>3</sub>, FeO, and Al<sub>2</sub>O<sub>3</sub>, and the formation of Cr<sub>2</sub>O<sub>3</sub> through interfacial redox reactions has been discovered. The presence of a liquid phase plays a pivotal role in influencing burn-on sand and metal penetration. Interface reactions are prioritized, with burn-on sand maintaining a predominant influence. As the liquid phase quantity within the sand escalates, there is a corresponding incremental rise in the incidence of metal penetration. Even a minimal presence of the silicon element in steel can impact the liquid phase’s formation. Moreover, the decomposition or dissolution of chromite sand is a significant factor in the development of burn-on sand and metal penetration. Thus, a thorough investigation into the conditions and contributing factors of this phenomenon is essential for its effective management and mitigation.</p>\",\"PeriodicalId\":16151,\"journal\":{\"name\":\"Journal of Iron and Steel Research International\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Iron and Steel Research International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s42243-024-01218-1\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42243-024-01218-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interfacial behaviors between ZG13Cr9Mo1VNbN stainless steel and chromite sand
To elucidate the formation mechanisms of burn-on sand and metal penetration during sand casting, some laboratory experiments were carried out at different temperatures (1813, 1833, 1853, and 1873 K) and holding time (20, 40, 60, and 90 min) to simulate the interaction between ZG13Cr9Mo1VNbN stainless steel and chromite sand. The results demonstrate that the defects primarily consist of a mixture of the liquid phase, chromite, and metal. The main components of the liquid phase are SiO2, MnO, MgO, Cr2O3, FeO, and Al2O3, and the formation of Cr2O3 through interfacial redox reactions has been discovered. The presence of a liquid phase plays a pivotal role in influencing burn-on sand and metal penetration. Interface reactions are prioritized, with burn-on sand maintaining a predominant influence. As the liquid phase quantity within the sand escalates, there is a corresponding incremental rise in the incidence of metal penetration. Even a minimal presence of the silicon element in steel can impact the liquid phase’s formation. Moreover, the decomposition or dissolution of chromite sand is a significant factor in the development of burn-on sand and metal penetration. Thus, a thorough investigation into the conditions and contributing factors of this phenomenon is essential for its effective management and mitigation.
期刊介绍:
Publishes critically reviewed original research of archival significance
Covers hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, materials processing, and more
Includes welding & joining, surface treatment, mathematical modeling, corrosion, wear and abrasion
Journal of Iron and Steel Research International publishes original papers and occasional invited reviews on aspects of research and technology in the process metallurgy and metallic materials. Coverage emphasizes the relationships among the processing, structure and properties of metals, including advanced steel materials, superalloy, intermetallics, metallic functional materials, powder metallurgy, structural titanium alloy, composite steel materials, high entropy alloy, amorphous alloys, metallic nanomaterials, etc..