具有多次空闲和几何放弃的更新批次到达队列分析

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Veena Goswami, Gopinath Panda
{"title":"具有多次空闲和几何放弃的更新批次到达队列分析","authors":"Veena Goswami, Gopinath Panda","doi":"10.1007/s11009-024-10089-8","DOIUrl":null,"url":null,"abstract":"<p>We investigate the dynamics of customer geometric abandonment within a queueing framework characterized by renewal input batch arrivals and multiple vacations. Customers’ impatience becomes evident when confronted with server vacations, triggering instances of abandonment. This phenomenon reduces the number of customers within the system during abandonment epochs following a geometric distribution. The probability of customers leaving the queue escalates with prolonged waiting times. We derive concise and closed-form expressions for system-length distributions at pre-arrival and arbitrary epochs by harnessing the power of supplementary variable and difference operator methods. Furthermore, we elucidate specific instances of our model, shedding light on its versatility. To substantiate our theoretical framework, we provide a series of illustrative numerical experiments presented through meticulously crafted tables and graphs, thereby showcasing the robustness and applicability of our methodology.</p>","PeriodicalId":18442,"journal":{"name":"Methodology and Computing in Applied Probability","volume":"4 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Renewal Batch Arrival Queues with Multiple Vacations and Geometric Abandonment\",\"authors\":\"Veena Goswami, Gopinath Panda\",\"doi\":\"10.1007/s11009-024-10089-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the dynamics of customer geometric abandonment within a queueing framework characterized by renewal input batch arrivals and multiple vacations. Customers’ impatience becomes evident when confronted with server vacations, triggering instances of abandonment. This phenomenon reduces the number of customers within the system during abandonment epochs following a geometric distribution. The probability of customers leaving the queue escalates with prolonged waiting times. We derive concise and closed-form expressions for system-length distributions at pre-arrival and arbitrary epochs by harnessing the power of supplementary variable and difference operator methods. Furthermore, we elucidate specific instances of our model, shedding light on its versatility. To substantiate our theoretical framework, we provide a series of illustrative numerical experiments presented through meticulously crafted tables and graphs, thereby showcasing the robustness and applicability of our methodology.</p>\",\"PeriodicalId\":18442,\"journal\":{\"name\":\"Methodology and Computing in Applied Probability\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methodology and Computing in Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11009-024-10089-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology and Computing in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-024-10089-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了以更新输入批次到达和多次空闲为特征的队列框架中客户几何放弃的动态。当服务器出现空闲时,客户的不耐烦情绪就会显现出来,从而引发放弃现象。这种现象使系统中的客户数量在放弃时间段内呈几何分布减少。客户离开队列的概率会随着等待时间的延长而增加。我们利用补充变量和差分算子方法,推导出了到达前和任意时间段系统长度分布的简明闭式表达式。此外,我们还阐明了模型的具体实例,从而揭示了模型的多功能性。为了证实我们的理论框架,我们通过精心制作的表格和图表提供了一系列说明性数值实验,从而展示了我们方法的稳健性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of Renewal Batch Arrival Queues with Multiple Vacations and Geometric Abandonment

Analysis of Renewal Batch Arrival Queues with Multiple Vacations and Geometric Abandonment

We investigate the dynamics of customer geometric abandonment within a queueing framework characterized by renewal input batch arrivals and multiple vacations. Customers’ impatience becomes evident when confronted with server vacations, triggering instances of abandonment. This phenomenon reduces the number of customers within the system during abandonment epochs following a geometric distribution. The probability of customers leaving the queue escalates with prolonged waiting times. We derive concise and closed-form expressions for system-length distributions at pre-arrival and arbitrary epochs by harnessing the power of supplementary variable and difference operator methods. Furthermore, we elucidate specific instances of our model, shedding light on its versatility. To substantiate our theoretical framework, we provide a series of illustrative numerical experiments presented through meticulously crafted tables and graphs, thereby showcasing the robustness and applicability of our methodology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
58
审稿时长
6-12 weeks
期刊介绍: Methodology and Computing in Applied Probability will publish high quality research and review articles in the areas of applied probability that emphasize methodology and computing. Of special interest are articles in important areas of applications that include detailed case studies. Applied probability is a broad research area that is of interest to many scientists in diverse disciplines including: anthropology, biology, communication theory, economics, epidemiology, finance, linguistics, meteorology, operations research, psychology, quality control, reliability theory, sociology and statistics. The following alphabetical listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interests: -Algorithms- Approximations- Asymptotic Approximations & Expansions- Combinatorial & Geometric Probability- Communication Networks- Extreme Value Theory- Finance- Image Analysis- Inequalities- Information Theory- Mathematical Physics- Molecular Biology- Monte Carlo Methods- Order Statistics- Queuing Theory- Reliability Theory- Stochastic Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信