SwdFold:基于最优传输理论的重权重和展开方法

Chu-Cheng Pan, Xiang Dong, Yu-Chang Sun, Ao-Yan Cheng, Ao-Bo Wang, Yu-Xuan Hu, Hao Cai
{"title":"SwdFold:基于最优传输理论的重权重和展开方法","authors":"Chu-Cheng Pan, Xiang Dong, Yu-Chang Sun, Ao-Yan Cheng, Ao-Bo Wang, Yu-Xuan Hu, Hao Cai","doi":"arxiv-2406.01635","DOIUrl":null,"url":null,"abstract":"High-energy physics experiments rely heavily on precise measurements of\nenergy and momentum, yet face significant challenges due to detector\nlimitations, calibration errors, and the intrinsic nature of particle\ninteractions. Traditional unfolding techniques have been employed to correct\nfor these distortions, yet they often suffer from model dependency and\nstability issues. We present a novel method, SwdFold, which utilizes the\nprinciples of optimal transport to provide a robust, model-independent\nframework to estimate the probability density ratio for data unfolding. It not\nonly unfold the toy experimental event by reweighted simulated data\ndistributions closely with true distributions but also maintains the integrity\nof physical features across various observables. We can expect it can enable\nmore reliable predictions and comprehensive analyses as a high precision\nreweighting and unfolding tool in high-energy physics.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SwdFold:A Reweighting and Unfolding method based on Optimal Transport Theory\",\"authors\":\"Chu-Cheng Pan, Xiang Dong, Yu-Chang Sun, Ao-Yan Cheng, Ao-Bo Wang, Yu-Xuan Hu, Hao Cai\",\"doi\":\"arxiv-2406.01635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-energy physics experiments rely heavily on precise measurements of\\nenergy and momentum, yet face significant challenges due to detector\\nlimitations, calibration errors, and the intrinsic nature of particle\\ninteractions. Traditional unfolding techniques have been employed to correct\\nfor these distortions, yet they often suffer from model dependency and\\nstability issues. We present a novel method, SwdFold, which utilizes the\\nprinciples of optimal transport to provide a robust, model-independent\\nframework to estimate the probability density ratio for data unfolding. It not\\nonly unfold the toy experimental event by reweighted simulated data\\ndistributions closely with true distributions but also maintains the integrity\\nof physical features across various observables. We can expect it can enable\\nmore reliable predictions and comprehensive analyses as a high precision\\nreweighting and unfolding tool in high-energy physics.\",\"PeriodicalId\":501065,\"journal\":{\"name\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.01635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.01635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高能物理实验在很大程度上依赖于能量和动量的精确测量,但由于探测器的限制、校准误差以及粒子相互作用的内在性质,这些实验面临着巨大的挑战。传统的展开技术被用来校正这些扭曲,但它们往往存在模型依赖性和稳定性问题。我们提出了一种新方法--SwdFold,它利用最优传输原理提供了一个稳健的、与模型无关的框架,用于估计数据展开的概率密度比。它不仅通过重新加权模拟数据分布来展开玩具实验事件,使之与真实分布接近,而且还保持了各种观测指标物理特征的完整性。我们可以期待它作为高能物理中的高精度再加权和展开工具,能够实现更可靠的预测和更全面的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SwdFold:A Reweighting and Unfolding method based on Optimal Transport Theory
High-energy physics experiments rely heavily on precise measurements of energy and momentum, yet face significant challenges due to detector limitations, calibration errors, and the intrinsic nature of particle interactions. Traditional unfolding techniques have been employed to correct for these distortions, yet they often suffer from model dependency and stability issues. We present a novel method, SwdFold, which utilizes the principles of optimal transport to provide a robust, model-independent framework to estimate the probability density ratio for data unfolding. It not only unfold the toy experimental event by reweighted simulated data distributions closely with true distributions but also maintains the integrity of physical features across various observables. We can expect it can enable more reliable predictions and comprehensive analyses as a high precision reweighting and unfolding tool in high-energy physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信