用于遥感卫星图像分类的 Kolmogorov-Arnold 网络

Minjong Cheon
{"title":"用于遥感卫星图像分类的 Kolmogorov-Arnold 网络","authors":"Minjong Cheon","doi":"arxiv-2406.00600","DOIUrl":null,"url":null,"abstract":"In this research, we propose the first approach for integrating the\nKolmogorov-Arnold Network (KAN) with various pre-trained Convolutional Neural\nNetwork (CNN) models for remote sensing (RS) scene classification tasks using\nthe EuroSAT dataset. Our novel methodology, named KCN, aims to replace\ntraditional Multi-Layer Perceptrons (MLPs) with KAN to enhance classification\nperformance. We employed multiple CNN-based models, including VGG16,\nMobileNetV2, EfficientNet, ConvNeXt, ResNet101, and Vision Transformer (ViT),\nand evaluated their performance when paired with KAN. Our experiments\ndemonstrated that KAN achieved high accuracy with fewer training epochs and\nparameters. Specifically, ConvNeXt paired with KAN showed the best performance,\nachieving 94% accuracy in the first epoch, which increased to 96% and remained\nconsistent across subsequent epochs. The results indicated that KAN and MLP\nboth achieved similar accuracy, with KAN performing slightly better in later\nepochs. By utilizing the EuroSAT dataset, we provided a robust testbed to\ninvestigate whether KAN is suitable for remote sensing classification tasks.\nGiven that KAN is a novel algorithm, there is substantial capacity for further\ndevelopment and optimization, suggesting that KCN offers a promising\nalternative for efficient image analysis in the RS field.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"181 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kolmogorov-Arnold Network for Satellite Image Classification in Remote Sensing\",\"authors\":\"Minjong Cheon\",\"doi\":\"arxiv-2406.00600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we propose the first approach for integrating the\\nKolmogorov-Arnold Network (KAN) with various pre-trained Convolutional Neural\\nNetwork (CNN) models for remote sensing (RS) scene classification tasks using\\nthe EuroSAT dataset. Our novel methodology, named KCN, aims to replace\\ntraditional Multi-Layer Perceptrons (MLPs) with KAN to enhance classification\\nperformance. We employed multiple CNN-based models, including VGG16,\\nMobileNetV2, EfficientNet, ConvNeXt, ResNet101, and Vision Transformer (ViT),\\nand evaluated their performance when paired with KAN. Our experiments\\ndemonstrated that KAN achieved high accuracy with fewer training epochs and\\nparameters. Specifically, ConvNeXt paired with KAN showed the best performance,\\nachieving 94% accuracy in the first epoch, which increased to 96% and remained\\nconsistent across subsequent epochs. The results indicated that KAN and MLP\\nboth achieved similar accuracy, with KAN performing slightly better in later\\nepochs. By utilizing the EuroSAT dataset, we provided a robust testbed to\\ninvestigate whether KAN is suitable for remote sensing classification tasks.\\nGiven that KAN is a novel algorithm, there is substantial capacity for further\\ndevelopment and optimization, suggesting that KCN offers a promising\\nalternative for efficient image analysis in the RS field.\",\"PeriodicalId\":501065,\"journal\":{\"name\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"volume\":\"181 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.00600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.00600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们利用 EuroSAT 数据集,首次提出了将 Kolmogorov-Arnold 网络(KAN)与各种预先训练好的卷积神经网络(CNN)模型相结合的方法,用于遥感(RS)场景分类任务。我们的新方法被命名为 KCN,旨在用 KAN 替代传统的多层感知器(MLP),以提高分类性能。我们采用了多种基于 CNN 的模型,包括 VGG16、MobileNetV2、EfficientNet、ConvNeXt、ResNet101 和 Vision Transformer (ViT),并评估了它们与 KAN 配对后的性能。我们的实验证明,KAN 可以用较少的训练历时和参数实现较高的准确率。具体来说,与 KAN 配对的 ConvNeXt 表现最佳,在第一个训练周期中达到 94% 的准确率,在随后的训练周期中准确率提高到 96%,并且保持一致。结果表明,KAN 和 MLP 的准确率相近,KAN 在后期的表现略好。通过利用 EuroSAT 数据集,我们为研究 KAN 是否适用于遥感分类任务提供了一个稳健的测试平台。鉴于 KAN 是一种新型算法,有很大的进一步开发和优化空间,这表明 KCN 为遥感领域的高效图像分析提供了一种很有前途的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kolmogorov-Arnold Network for Satellite Image Classification in Remote Sensing
In this research, we propose the first approach for integrating the Kolmogorov-Arnold Network (KAN) with various pre-trained Convolutional Neural Network (CNN) models for remote sensing (RS) scene classification tasks using the EuroSAT dataset. Our novel methodology, named KCN, aims to replace traditional Multi-Layer Perceptrons (MLPs) with KAN to enhance classification performance. We employed multiple CNN-based models, including VGG16, MobileNetV2, EfficientNet, ConvNeXt, ResNet101, and Vision Transformer (ViT), and evaluated their performance when paired with KAN. Our experiments demonstrated that KAN achieved high accuracy with fewer training epochs and parameters. Specifically, ConvNeXt paired with KAN showed the best performance, achieving 94% accuracy in the first epoch, which increased to 96% and remained consistent across subsequent epochs. The results indicated that KAN and MLP both achieved similar accuracy, with KAN performing slightly better in later epochs. By utilizing the EuroSAT dataset, we provided a robust testbed to investigate whether KAN is suitable for remote sensing classification tasks. Given that KAN is a novel algorithm, there is substantial capacity for further development and optimization, suggesting that KCN offers a promising alternative for efficient image analysis in the RS field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信