类群和截断的 $n$ 准范畴

Victor Brittes
{"title":"类群和截断的 $n$ 准范畴","authors":"Victor Brittes","doi":"arxiv-2406.01490","DOIUrl":null,"url":null,"abstract":"We define groupoidal and $(n+k)$-truncated $n$-quasi-categories, which are\nthe translation to the world of $n$-quasi-categories of groupoidal and\ntruncated $(\\infty, n)$-$\\Theta$-spaces defined by Rezk. We show that these\nobjects are the fibrant objects of model structures on the category of\npresheaves on $\\Theta_n$ obtained by localisation of Ara's model structure for\n$n$-quasi-categories. Furthermore, we prove that the inclusion $\\Delta \\to\n\\Theta_n$ induces a Quillen equivalence between the model structure for\ngroupoidal (resp. and $n$-truncated) $n$-quasi-categories and the Kan-Quillen\nmodel structure for spaces (resp. homotopy $n$-types) on simplicial sets. To\nget to these results, we also construct a cylinder object for\n$n$-quasi-categories.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Groupoidal and truncated $n$-quasi-categories\",\"authors\":\"Victor Brittes\",\"doi\":\"arxiv-2406.01490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define groupoidal and $(n+k)$-truncated $n$-quasi-categories, which are\\nthe translation to the world of $n$-quasi-categories of groupoidal and\\ntruncated $(\\\\infty, n)$-$\\\\Theta$-spaces defined by Rezk. We show that these\\nobjects are the fibrant objects of model structures on the category of\\npresheaves on $\\\\Theta_n$ obtained by localisation of Ara's model structure for\\n$n$-quasi-categories. Furthermore, we prove that the inclusion $\\\\Delta \\\\to\\n\\\\Theta_n$ induces a Quillen equivalence between the model structure for\\ngroupoidal (resp. and $n$-truncated) $n$-quasi-categories and the Kan-Quillen\\nmodel structure for spaces (resp. homotopy $n$-types) on simplicial sets. To\\nget to these results, we also construct a cylinder object for\\n$n$-quasi-categories.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.01490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.01490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们定义了组元和 $(n+k)$ 截断的 $n$- 准类,它们是雷斯克定义的组元和截断的 $(\infty, n)$-$Theta$ 空间的 $n$- 准类世界的转换。我们证明了这些对象是通过阿拉的模型结构对$n$-准范畴的局部化而得到的关于$\Theta_n$的前馈范畴的模型结构的纤维对象。此外,我们还证明了$\Delta \to\Theta_n$ 的包含在群环(或者说,与$n$截断)$n$-准范畴的模型结构与简集上的空间(或者说,同构$n$-类型)的坎-奎伦模型结构之间诱导了一个奎伦等价。除了这些结果,我们还为$n$-准类构造了一个圆柱体对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Groupoidal and truncated $n$-quasi-categories
We define groupoidal and $(n+k)$-truncated $n$-quasi-categories, which are the translation to the world of $n$-quasi-categories of groupoidal and truncated $(\infty, n)$-$\Theta$-spaces defined by Rezk. We show that these objects are the fibrant objects of model structures on the category of presheaves on $\Theta_n$ obtained by localisation of Ara's model structure for $n$-quasi-categories. Furthermore, we prove that the inclusion $\Delta \to \Theta_n$ induces a Quillen equivalence between the model structure for groupoidal (resp. and $n$-truncated) $n$-quasi-categories and the Kan-Quillen model structure for spaces (resp. homotopy $n$-types) on simplicial sets. To get to these results, we also construct a cylinder object for $n$-quasi-categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信