产品的无限完备性

Peter J. Haine
{"title":"产品的无限完备性","authors":"Peter J. Haine","doi":"arxiv-2406.00136","DOIUrl":null,"url":null,"abstract":"A source of difficulty in profinite homotopy theory is that the profinite\ncompletion functor does not preserve finite products. In this note, we provide\na new, checkable criterion on prospaces $X$ and $Y$ that guarantees that the\nprofinite completion of $X\\times Y$ agrees with the product of the profinite\ncompletions of $X$ and $Y$. Using this criterion, we show that profinite\ncompletion preserves products of \\'{e}tale homotopy types of qcqs schemes. This\nfills a gap in Chough's proof of the K\\\"{u}nneth formula for the \\'{e}tale\nhomotopy type of a product of proper schemes over a separably closed field.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Profinite completions of products\",\"authors\":\"Peter J. Haine\",\"doi\":\"arxiv-2406.00136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A source of difficulty in profinite homotopy theory is that the profinite\\ncompletion functor does not preserve finite products. In this note, we provide\\na new, checkable criterion on prospaces $X$ and $Y$ that guarantees that the\\nprofinite completion of $X\\\\times Y$ agrees with the product of the profinite\\ncompletions of $X$ and $Y$. Using this criterion, we show that profinite\\ncompletion preserves products of \\\\'{e}tale homotopy types of qcqs schemes. This\\nfills a gap in Chough's proof of the K\\\\\\\"{u}nneth formula for the \\\\'{e}tale\\nhomotopy type of a product of proper schemes over a separably closed field.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.00136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.00136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无限同调理论的一个难题是无限完形函子不保留有限乘积。在本注释中,我们提供了一个关于原空间 $X$ 和 $Y$ 的新的、可检查的准则,它保证了 $X\times Y$ 的无限完成与 $X$ 和 $Y$ 的廓清完成的乘积一致。利用这个标准,我们证明了profinitecompletion保留了qcqs方案的\'{e}tale同调类型的乘积。这填补了乔夫对可分离闭域上适当方案的乘积的\'{e}tale同调类型的K\"{u}nneth公式证明的空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Profinite completions of products
A source of difficulty in profinite homotopy theory is that the profinite completion functor does not preserve finite products. In this note, we provide a new, checkable criterion on prospaces $X$ and $Y$ that guarantees that the profinite completion of $X\times Y$ agrees with the product of the profinite completions of $X$ and $Y$. Using this criterion, we show that profinite completion preserves products of \'{e}tale homotopy types of qcqs schemes. This fills a gap in Chough's proof of the K\"{u}nneth formula for the \'{e}tale homotopy type of a product of proper schemes over a separably closed field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信