E. K. Kazenas, N. A. Andreeva, G. K. Astakhova, V. A. Volchenkova, O. A. Ovchinnikova, T. N. Penkina, O. N. Fomina
{"title":"碱土金属钨酸盐气态分子的蒸汽成分和热力学特性","authors":"E. K. Kazenas, N. A. Andreeva, G. K. Astakhova, V. A. Volchenkova, O. A. Ovchinnikova, T. N. Penkina, O. N. Fomina","doi":"10.1134/S2075113324700357","DOIUrl":null,"url":null,"abstract":"<p>Calculated and experimental mass spectra of gaseous tungstates of alkaline earth metals MgWO<sub>4(g)</sub>, CaWO<sub>4(g)</sub>, SrWO<sub>4(g)</sub>, and BaWO<sub>4(g)</sub> in the temperature range from 1600 to 2000 K are presented. The partial vapor pressures are determined and equations are derived for the temperature dependences of the partial pressures of gaseous molecules of alkaline earth metal tungstates for liquids in the following form (<i>P</i>, atm):\n<span>\\(\\log P\\left( {{\\text{MgW}}{{{\\text{O}}}_{4}}_{{\\left( {\\text{L}} \\right)}}} \\right) = - 28\\,737{\\text{/}}T + 7.95{\\text{ for the range from }}1600{\\text{ to }}1900{\\text{ K}};\\)</span> <span>\\(\\log P\\left( {{\\text{CaW}}{{{\\text{O}}}_{4}}_{{\\left( {\\text{L}} \\right)}}} \\right) = - 25\\,265{\\text{/}}T + 6.913{\\text{ for the range from }}1850{\\text{ to 20}}00{\\text{ K}};\\)</span> <span>\\(\\log P\\left( {{\\text{SrW}}{{{\\text{O}}}_{4}}_{{\\left( {\\text{L}} \\right)}}} \\right) = - 25\\,052{\\text{/}}T + 7.13{\\text{ for the range from }}1800{\\text{ to 19}}00{\\text{ K}};\\)</span> <span>\\(\\log P\\left( {{\\text{BaW}}{{{\\text{O}}}_{4}}_{{\\left( {\\text{L}} \\right)}}} \\right) = - 20570{\\text{/}}T + 4.58{\\text{ for the range from }}1770{\\text{ to 19}}00{\\text{ K}}{\\text{.}}\\)</span>\nOn the basis of experimental data on vapor pressure, the enthalpies of evaporation (<span>\\(\\Delta H_{{s,0}}^{0}\\)</span>), formation (<span>\\( - \\Delta H_{{f,0}}^{0}\\)</span>), and atomization (<span>\\(\\Delta H_{{{\\text{at}},0}}^{0}\\)</span>) of gaseous tungstates of alkaline earth metals are calculated, which, respectively, amount to (Δ<i>H</i><sup>0</sup>, kJ/mol) 652, 890, and 2855 for MgWO<sub>4</sub>; 644, 974, and 2968 for CaWO<sub>4</sub>; 615, 1045, and 3056 for SrWO<sub>4</sub>; and 548, 1045, and 3095 for BaWO<sub>4</sub>. It is determined that the enthalpy of sublimation of alkaline earth metal tungstates decreases from magnesium to barium.</p>","PeriodicalId":586,"journal":{"name":"Inorganic Materials: Applied Research","volume":"15 3","pages":"893 - 898"},"PeriodicalIF":0.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vapor Composition and Thermodynamic Characteristics of Gaseous Molecules of Alkaline Earth Metal Tungstates\",\"authors\":\"E. K. Kazenas, N. A. Andreeva, G. K. Astakhova, V. A. Volchenkova, O. A. Ovchinnikova, T. N. Penkina, O. N. Fomina\",\"doi\":\"10.1134/S2075113324700357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Calculated and experimental mass spectra of gaseous tungstates of alkaline earth metals MgWO<sub>4(g)</sub>, CaWO<sub>4(g)</sub>, SrWO<sub>4(g)</sub>, and BaWO<sub>4(g)</sub> in the temperature range from 1600 to 2000 K are presented. The partial vapor pressures are determined and equations are derived for the temperature dependences of the partial pressures of gaseous molecules of alkaline earth metal tungstates for liquids in the following form (<i>P</i>, atm):\\n<span>\\\\(\\\\log P\\\\left( {{\\\\text{MgW}}{{{\\\\text{O}}}_{4}}_{{\\\\left( {\\\\text{L}} \\\\right)}}} \\\\right) = - 28\\\\,737{\\\\text{/}}T + 7.95{\\\\text{ for the range from }}1600{\\\\text{ to }}1900{\\\\text{ K}};\\\\)</span> <span>\\\\(\\\\log P\\\\left( {{\\\\text{CaW}}{{{\\\\text{O}}}_{4}}_{{\\\\left( {\\\\text{L}} \\\\right)}}} \\\\right) = - 25\\\\,265{\\\\text{/}}T + 6.913{\\\\text{ for the range from }}1850{\\\\text{ to 20}}00{\\\\text{ K}};\\\\)</span> <span>\\\\(\\\\log P\\\\left( {{\\\\text{SrW}}{{{\\\\text{O}}}_{4}}_{{\\\\left( {\\\\text{L}} \\\\right)}}} \\\\right) = - 25\\\\,052{\\\\text{/}}T + 7.13{\\\\text{ for the range from }}1800{\\\\text{ to 19}}00{\\\\text{ K}};\\\\)</span> <span>\\\\(\\\\log P\\\\left( {{\\\\text{BaW}}{{{\\\\text{O}}}_{4}}_{{\\\\left( {\\\\text{L}} \\\\right)}}} \\\\right) = - 20570{\\\\text{/}}T + 4.58{\\\\text{ for the range from }}1770{\\\\text{ to 19}}00{\\\\text{ K}}{\\\\text{.}}\\\\)</span>\\nOn the basis of experimental data on vapor pressure, the enthalpies of evaporation (<span>\\\\(\\\\Delta H_{{s,0}}^{0}\\\\)</span>), formation (<span>\\\\( - \\\\Delta H_{{f,0}}^{0}\\\\)</span>), and atomization (<span>\\\\(\\\\Delta H_{{{\\\\text{at}},0}}^{0}\\\\)</span>) of gaseous tungstates of alkaline earth metals are calculated, which, respectively, amount to (Δ<i>H</i><sup>0</sup>, kJ/mol) 652, 890, and 2855 for MgWO<sub>4</sub>; 644, 974, and 2968 for CaWO<sub>4</sub>; 615, 1045, and 3056 for SrWO<sub>4</sub>; and 548, 1045, and 3095 for BaWO<sub>4</sub>. It is determined that the enthalpy of sublimation of alkaline earth metal tungstates decreases from magnesium to barium.</p>\",\"PeriodicalId\":586,\"journal\":{\"name\":\"Inorganic Materials: Applied Research\",\"volume\":\"15 3\",\"pages\":\"893 - 898\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Materials: Applied Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2075113324700357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials: Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2075113324700357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
摘要 介绍了碱土金属 MgWO4(g)、CaWO4(g)、SrWO4(g) 和 BaWO4(g) 的气态钨酸盐在 1600 至 2000 K 温度范围内的计算和实验质谱。确定了碱土金属钨酸盐液体气态分子的分蒸汽压,并推导出与温度有关的方程式,其形式如下(P,atm):(\log P\left( {{\text{MgW}}{{\text{O}}}_{4}}}_{{\left( {\text{L}} \right)}}}}\right) = - 28\737{text{/}T + 7.95{text{ for the range from }}1600\text{ to }}1900\{text{ K}};\)\(\log P\left( {{text{CaW}}{{text{O}}}_{{4}}}_{{{left( {\text{L}} \right)}}}}\right) = - 25\,265{text{/}T + 6.913\text{ for the range from }}1850\{text{ to 20}}00{text{K}};\)\(\log P\left( {{text{SrW}}{{{text{O}}}_{{4}}}_{{{left( {\text{L}} \right)}}} )\right) = - 25\052{text{/}T + 7.13{text{ for the range from }}1800\text{ to 19}}00{text{ K}};\)\(\log P\left( {{\text{BaW}}{{{text{O}}}_{{4}}}_{{{left( {\text{L}} \right)}}} )\right) = - 20570{\text{/}}T + 4.58{text{ for the range from }}1770{\text{ to 19}}00{\text{ K}} {text{。根据蒸汽压的实验数据,蒸发焓 (\(\Delta H_{{s,0}^{0}\)), 形成焓 (\( -\Delta H_{{f,0}^{0}\))、和雾化(\(\Δ H_{{text{at}},0}}^{0}/))的计算结果,对于 MgWO4,分别为(ΔH0,kJ/mol)652、890 和 2855;CaWO4:644、974 和 2968;SrWO4:615、1045 和 3056;BaWO4:548、1045 和 3095。据测定,碱土金属钨酸盐的升华焓从镁到钡依次降低。
Vapor Composition and Thermodynamic Characteristics of Gaseous Molecules of Alkaline Earth Metal Tungstates
Calculated and experimental mass spectra of gaseous tungstates of alkaline earth metals MgWO4(g), CaWO4(g), SrWO4(g), and BaWO4(g) in the temperature range from 1600 to 2000 K are presented. The partial vapor pressures are determined and equations are derived for the temperature dependences of the partial pressures of gaseous molecules of alkaline earth metal tungstates for liquids in the following form (P, atm):
\(\log P\left( {{\text{MgW}}{{{\text{O}}}_{4}}_{{\left( {\text{L}} \right)}}} \right) = - 28\,737{\text{/}}T + 7.95{\text{ for the range from }}1600{\text{ to }}1900{\text{ K}};\)\(\log P\left( {{\text{CaW}}{{{\text{O}}}_{4}}_{{\left( {\text{L}} \right)}}} \right) = - 25\,265{\text{/}}T + 6.913{\text{ for the range from }}1850{\text{ to 20}}00{\text{ K}};\)\(\log P\left( {{\text{SrW}}{{{\text{O}}}_{4}}_{{\left( {\text{L}} \right)}}} \right) = - 25\,052{\text{/}}T + 7.13{\text{ for the range from }}1800{\text{ to 19}}00{\text{ K}};\)\(\log P\left( {{\text{BaW}}{{{\text{O}}}_{4}}_{{\left( {\text{L}} \right)}}} \right) = - 20570{\text{/}}T + 4.58{\text{ for the range from }}1770{\text{ to 19}}00{\text{ K}}{\text{.}}\)
On the basis of experimental data on vapor pressure, the enthalpies of evaporation (\(\Delta H_{{s,0}}^{0}\)), formation (\( - \Delta H_{{f,0}}^{0}\)), and atomization (\(\Delta H_{{{\text{at}},0}}^{0}\)) of gaseous tungstates of alkaline earth metals are calculated, which, respectively, amount to (ΔH0, kJ/mol) 652, 890, and 2855 for MgWO4; 644, 974, and 2968 for CaWO4; 615, 1045, and 3056 for SrWO4; and 548, 1045, and 3095 for BaWO4. It is determined that the enthalpy of sublimation of alkaline earth metal tungstates decreases from magnesium to barium.
期刊介绍:
Inorganic Materials: Applied Research contains translations of research articles devoted to applied aspects of inorganic materials. Best articles are selected from four Russian periodicals: Materialovedenie, Perspektivnye Materialy, Fizika i Khimiya Obrabotki Materialov, and Voprosy Materialovedeniya and translated into English. The journal reports recent achievements in materials science: physical and chemical bases of materials science; effects of synergism in composite materials; computer simulations; creation of new materials (including carbon-based materials and ceramics, semiconductors, superconductors, composite materials, polymers, materials for nuclear engineering, materials for aircraft and space engineering, materials for quantum electronics, materials for electronics and optoelectronics, materials for nuclear and thermonuclear power engineering, radiation-hardened materials, materials for use in medicine, etc.); analytical techniques; structure–property relationships; nanostructures and nanotechnologies; advanced technologies; use of hydrogen in structural materials; and economic and environmental issues. The journal also considers engineering issues of materials processing with plasma, high-gradient crystallization, laser technology, and ultrasonic technology. Currently the journal does not accept direct submissions, but submissions to one of the source journals is possible.