Christoph Koutschan, Anton Ponomarchuk, Josef Schicho
{"title":"用具有最小 Arity 的函数表示片线性函数","authors":"Christoph Koutschan, Anton Ponomarchuk, Josef Schicho","doi":"arxiv-2406.02421","DOIUrl":null,"url":null,"abstract":"Any continuous piecewise-linear function $F\\colon \\mathbb{R}^{n}\\to\n\\mathbb{R}$ can be represented as a linear combination of $\\max$ functions of\nat most $n+1$ affine-linear functions. In our previous paper [``Representing\npiecewise linear functions by functions with small arity'', AAECC, 2023], we\nshowed that this upper bound of $n+1$ arguments is tight. In the present paper,\nwe extend this result by establishing a correspondence between the function $F$\nand the minimal number of arguments that are needed in any such decomposition.\nWe show that the tessellation of the input space $\\mathbb{R}^{n}$ induced by\nthe function $F$ has a direct connection to the number of arguments in the\n$\\max$ functions.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representing Piecewise-Linear Functions by Functions with Minimal Arity\",\"authors\":\"Christoph Koutschan, Anton Ponomarchuk, Josef Schicho\",\"doi\":\"arxiv-2406.02421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Any continuous piecewise-linear function $F\\\\colon \\\\mathbb{R}^{n}\\\\to\\n\\\\mathbb{R}$ can be represented as a linear combination of $\\\\max$ functions of\\nat most $n+1$ affine-linear functions. In our previous paper [``Representing\\npiecewise linear functions by functions with small arity'', AAECC, 2023], we\\nshowed that this upper bound of $n+1$ arguments is tight. In the present paper,\\nwe extend this result by establishing a correspondence between the function $F$\\nand the minimal number of arguments that are needed in any such decomposition.\\nWe show that the tessellation of the input space $\\\\mathbb{R}^{n}$ induced by\\nthe function $F$ has a direct connection to the number of arguments in the\\n$\\\\max$ functions.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.02421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.02421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
任何连续的片断线性函数 $F\colon \mathbb{R}^{n}\to\mathbb{R}$ 都可以表示为最多 $n+1$ 仿真线性函数的 $\max$ 函数的线性组合。在我们之前的论文["Representingpiecewise linear functions by functions with small arity'', AAECC, 2023]中,我们证明了这个 $n+1$ 参数的上限是很紧的。在本文中,我们通过建立函数 $F$ 与任何此类分解所需的最小参数数之间的对应关系来扩展这一结果。我们证明,函数 $F$ 所诱导的输入空间 $\mathbb{R}^{n}$ 的细分与 $\max$ 函数中的参数数有直接联系。
Representing Piecewise-Linear Functions by Functions with Minimal Arity
Any continuous piecewise-linear function $F\colon \mathbb{R}^{n}\to
\mathbb{R}$ can be represented as a linear combination of $\max$ functions of
at most $n+1$ affine-linear functions. In our previous paper [``Representing
piecewise linear functions by functions with small arity'', AAECC, 2023], we
showed that this upper bound of $n+1$ arguments is tight. In the present paper,
we extend this result by establishing a correspondence between the function $F$
and the minimal number of arguments that are needed in any such decomposition.
We show that the tessellation of the input space $\mathbb{R}^{n}$ induced by
the function $F$ has a direct connection to the number of arguments in the
$\max$ functions.