{"title":"从度量角度看一阶优化方法的复杂性","authors":"A. S. Lewis, Tonghua Tian","doi":"10.1007/s10107-024-02091-2","DOIUrl":null,"url":null,"abstract":"<p>A central tool for understanding first-order optimization algorithms is the Kurdyka–Łojasiewicz inequality. Standard approaches to such methods rely crucially on this inequality to leverage sufficient decrease conditions involving gradients or subgradients. However, the KL property fundamentally concerns not subgradients but rather “slope”, a purely metric notion. By highlighting this view, and avoiding any use of subgradients, we present a simple and concise complexity analysis for first-order optimization algorithms on metric spaces. This subgradient-free perspective also frames a short and focused proof of the KL property for nonsmooth semi-algebraic functions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The complexity of first-order optimization methods from a metric perspective\",\"authors\":\"A. S. Lewis, Tonghua Tian\",\"doi\":\"10.1007/s10107-024-02091-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A central tool for understanding first-order optimization algorithms is the Kurdyka–Łojasiewicz inequality. Standard approaches to such methods rely crucially on this inequality to leverage sufficient decrease conditions involving gradients or subgradients. However, the KL property fundamentally concerns not subgradients but rather “slope”, a purely metric notion. By highlighting this view, and avoiding any use of subgradients, we present a simple and concise complexity analysis for first-order optimization algorithms on metric spaces. This subgradient-free perspective also frames a short and focused proof of the KL property for nonsmooth semi-algebraic functions.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02091-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02091-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
The complexity of first-order optimization methods from a metric perspective
A central tool for understanding first-order optimization algorithms is the Kurdyka–Łojasiewicz inequality. Standard approaches to such methods rely crucially on this inequality to leverage sufficient decrease conditions involving gradients or subgradients. However, the KL property fundamentally concerns not subgradients but rather “slope”, a purely metric notion. By highlighting this view, and avoiding any use of subgradients, we present a simple and concise complexity analysis for first-order optimization algorithms on metric spaces. This subgradient-free perspective also frames a short and focused proof of the KL property for nonsmooth semi-algebraic functions.