{"title":"泊松几何中的经典 KMS 函数和相变","authors":"Nicolò,Drago, Stefan,Waldmann","doi":"10.4310/jsg.2023.v21.n5.a3","DOIUrl":null,"url":null,"abstract":"In this paper we study the convex cone of not necessarily smooth measures satisfying the classical KMS condition within the context of Poisson geometry. We discuss the general properties of KMS measures and their relation with the underlying Poisson geometry in analogy to Weinstein’s seminal work in the smooth case. Moreover, by generalizing results from the symplectic case, we focus on the case of $b$-Poisson manifolds, where we provide an almost complete characterization of the convex cone of KMS measures.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"14 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical KMS functionals and phase transitions in Poisson geometry\",\"authors\":\"Nicolò,Drago, Stefan,Waldmann\",\"doi\":\"10.4310/jsg.2023.v21.n5.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the convex cone of not necessarily smooth measures satisfying the classical KMS condition within the context of Poisson geometry. We discuss the general properties of KMS measures and their relation with the underlying Poisson geometry in analogy to Weinstein’s seminal work in the smooth case. Moreover, by generalizing results from the symplectic case, we focus on the case of $b$-Poisson manifolds, where we provide an almost complete characterization of the convex cone of KMS measures.\",\"PeriodicalId\":50029,\"journal\":{\"name\":\"Journal of Symplectic Geometry\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symplectic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2023.v21.n5.a3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2023.v21.n5.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Classical KMS functionals and phase transitions in Poisson geometry
In this paper we study the convex cone of not necessarily smooth measures satisfying the classical KMS condition within the context of Poisson geometry. We discuss the general properties of KMS measures and their relation with the underlying Poisson geometry in analogy to Weinstein’s seminal work in the smooth case. Moreover, by generalizing results from the symplectic case, we focus on the case of $b$-Poisson manifolds, where we provide an almost complete characterization of the convex cone of KMS measures.
期刊介绍:
Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.