赫尔德连续赫西亚条件下非凸优化的通用重球法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Naoki Marumo, Akiko Takeda
{"title":"赫尔德连续赫西亚条件下非凸优化的通用重球法","authors":"Naoki Marumo, Akiko Takeda","doi":"10.1007/s10107-024-02100-4","DOIUrl":null,"url":null,"abstract":"<p>We propose a new first-order method for minimizing nonconvex functions with Lipschitz continuous gradients and Hölder continuous Hessians. The proposed algorithm is a heavy-ball method equipped with two particular restart mechanisms. It finds a solution where the gradient norm is less than <span>\\(\\varepsilon \\)</span> in <span>\\(O(H_{\\nu }^{\\frac{1}{2 + 2 \\nu }} \\varepsilon ^{- \\frac{4 + 3 \\nu }{2 + 2 \\nu }})\\)</span> function and gradient evaluations, where <span>\\(\\nu \\in [0, 1]\\)</span> and <span>\\(H_{\\nu }\\)</span> are the Hölder exponent and constant, respectively. This complexity result covers the classical bound of <span>\\(O(\\varepsilon ^{-2})\\)</span> for <span>\\(\\nu = 0\\)</span> and the state-of-the-art bound of <span>\\(O(\\varepsilon ^{-7/4})\\)</span> for <span>\\(\\nu = 1\\)</span>. Our algorithm is <span>\\(\\nu \\)</span>-independent and thus universal; it automatically achieves the above complexity bound with the optimal <span>\\(\\nu \\in [0, 1]\\)</span> without knowledge of <span>\\(H_{\\nu }\\)</span>. In addition, the algorithm does not require other problem-dependent parameters as input, including the gradient’s Lipschitz constant or the target accuracy <span>\\(\\varepsilon \\)</span>. Numerical results illustrate that the proposed method is promising.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal heavy-ball method for nonconvex optimization under Hölder continuous Hessians\",\"authors\":\"Naoki Marumo, Akiko Takeda\",\"doi\":\"10.1007/s10107-024-02100-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a new first-order method for minimizing nonconvex functions with Lipschitz continuous gradients and Hölder continuous Hessians. The proposed algorithm is a heavy-ball method equipped with two particular restart mechanisms. It finds a solution where the gradient norm is less than <span>\\\\(\\\\varepsilon \\\\)</span> in <span>\\\\(O(H_{\\\\nu }^{\\\\frac{1}{2 + 2 \\\\nu }} \\\\varepsilon ^{- \\\\frac{4 + 3 \\\\nu }{2 + 2 \\\\nu }})\\\\)</span> function and gradient evaluations, where <span>\\\\(\\\\nu \\\\in [0, 1]\\\\)</span> and <span>\\\\(H_{\\\\nu }\\\\)</span> are the Hölder exponent and constant, respectively. This complexity result covers the classical bound of <span>\\\\(O(\\\\varepsilon ^{-2})\\\\)</span> for <span>\\\\(\\\\nu = 0\\\\)</span> and the state-of-the-art bound of <span>\\\\(O(\\\\varepsilon ^{-7/4})\\\\)</span> for <span>\\\\(\\\\nu = 1\\\\)</span>. Our algorithm is <span>\\\\(\\\\nu \\\\)</span>-independent and thus universal; it automatically achieves the above complexity bound with the optimal <span>\\\\(\\\\nu \\\\in [0, 1]\\\\)</span> without knowledge of <span>\\\\(H_{\\\\nu }\\\\)</span>. In addition, the algorithm does not require other problem-dependent parameters as input, including the gradient’s Lipschitz constant or the target accuracy <span>\\\\(\\\\varepsilon \\\\)</span>. Numerical results illustrate that the proposed method is promising.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02100-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02100-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的一阶方法,用于最小化具有 Lipschitz 连续梯度和 Hölder 连续 Hessians 的非凸函数。所提出的算法是一种重球方法,配备了两种特殊的重启机制。它能在\(O(H_{\nu }^{\frac{1}{2 + 2 \nu }} 内找到梯度规范小于\(\varepsilon \)的解。\varepsilon ^{- \frac{4 + 3 \nu }{2 + 2 \nu }})函数和梯度评估,其中 \(\nu \in [0, 1]\) 和 \(H_\{nu }\) 分别是霍尔德指数和常数。这个复杂度结果涵盖了 \(\nu = 0\) 的经典边界(O(\varepsilon ^{-2}))和 \(\nu = 1\) 的最新边界(O(\varepsilon ^{-7/4}))。我们的算法与 \(\nu \)无关,因此是通用的;它可以在不知道 \(H_{\nu }\) 的情况下,以最优的 \(\nu \in [0, 1]\) 自动实现上述复杂度约束。此外,该算法不需要其他与问题相关的参数作为输入,包括梯度的 Lipschitz 常量或目标精度 \(\varepsilon \)。数值结果表明,所提出的方法很有前途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Universal heavy-ball method for nonconvex optimization under Hölder continuous Hessians

Universal heavy-ball method for nonconvex optimization under Hölder continuous Hessians

We propose a new first-order method for minimizing nonconvex functions with Lipschitz continuous gradients and Hölder continuous Hessians. The proposed algorithm is a heavy-ball method equipped with two particular restart mechanisms. It finds a solution where the gradient norm is less than \(\varepsilon \) in \(O(H_{\nu }^{\frac{1}{2 + 2 \nu }} \varepsilon ^{- \frac{4 + 3 \nu }{2 + 2 \nu }})\) function and gradient evaluations, where \(\nu \in [0, 1]\) and \(H_{\nu }\) are the Hölder exponent and constant, respectively. This complexity result covers the classical bound of \(O(\varepsilon ^{-2})\) for \(\nu = 0\) and the state-of-the-art bound of \(O(\varepsilon ^{-7/4})\) for \(\nu = 1\). Our algorithm is \(\nu \)-independent and thus universal; it automatically achieves the above complexity bound with the optimal \(\nu \in [0, 1]\) without knowledge of \(H_{\nu }\). In addition, the algorithm does not require other problem-dependent parameters as input, including the gradient’s Lipschitz constant or the target accuracy \(\varepsilon \). Numerical results illustrate that the proposed method is promising.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信