人工智能的鲁棒性:从以人为本的角度看技术挑战与机遇

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Andrea Tocchetti, Lorenzo Corti, Agathe Balayn, Mireia Yurrita, Philip Lippmann, Marco Brambilla, Jie Yang
{"title":"人工智能的鲁棒性:从以人为本的角度看技术挑战与机遇","authors":"Andrea Tocchetti, Lorenzo Corti, Agathe Balayn, Mireia Yurrita, Philip Lippmann, Marco Brambilla, Jie Yang","doi":"10.1145/3665926","DOIUrl":null,"url":null,"abstract":"<p>Despite the impressive performance of Artificial Intelligence (AI) systems, their robustness remains elusive and constitutes a key issue that impedes large-scale adoption. Besides, robustness is interpreted differently across domains and contexts of AI. In this work, we systematically survey recent progress to provide a reconciled terminology of concepts around AI robustness. We introduce three taxonomies to organize and describe the literature both from a fundamental and applied point of view: 1) methods and approaches that address robustness in different phases of the machine learning pipeline; 2) methods improving robustness in specific model architectures, tasks, and systems; and in addition, 3) methodologies and insights around evaluating the robustness of AI systems, particularly the trade-offs with other trustworthiness properties. Finally, we identify and discuss research gaps and opportunities and give an outlook on the field. We highlight the central role of humans in evaluating and enhancing AI robustness, considering the necessary knowledge they can provide, and discuss the need for better understanding practices and developing supportive tools in the future.</p>","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A.I. Robustness: a Human-Centered Perspective on Technological Challenges and Opportunities\",\"authors\":\"Andrea Tocchetti, Lorenzo Corti, Agathe Balayn, Mireia Yurrita, Philip Lippmann, Marco Brambilla, Jie Yang\",\"doi\":\"10.1145/3665926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite the impressive performance of Artificial Intelligence (AI) systems, their robustness remains elusive and constitutes a key issue that impedes large-scale adoption. Besides, robustness is interpreted differently across domains and contexts of AI. In this work, we systematically survey recent progress to provide a reconciled terminology of concepts around AI robustness. We introduce three taxonomies to organize and describe the literature both from a fundamental and applied point of view: 1) methods and approaches that address robustness in different phases of the machine learning pipeline; 2) methods improving robustness in specific model architectures, tasks, and systems; and in addition, 3) methodologies and insights around evaluating the robustness of AI systems, particularly the trade-offs with other trustworthiness properties. Finally, we identify and discuss research gaps and opportunities and give an outlook on the field. We highlight the central role of humans in evaluating and enhancing AI robustness, considering the necessary knowledge they can provide, and discuss the need for better understanding practices and developing supportive tools in the future.</p>\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3665926\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3665926","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

尽管人工智能(AI)系统的性能令人印象深刻,但其鲁棒性仍然难以捉摸,成为阻碍大规模应用的关键问题。此外,在不同的人工智能领域和环境中,对鲁棒性的解释也不尽相同。在这项工作中,我们系统地调查了最近的进展,为人工智能的鲁棒性提供了一个协调的概念术语。我们引入了三个分类法,从基础和应用的角度来组织和描述文献:1)在机器学习管道的不同阶段解决鲁棒性问题的方法和途径;2)在特定模型架构、任务和系统中提高鲁棒性的方法;此外,3)评估人工智能系统鲁棒性的方法和见解,特别是与其他可信性属性之间的权衡。最后,我们确定并讨论了研究差距和机遇,并对该领域进行了展望。我们强调了人类在评估和增强人工智能鲁棒性方面的核心作用,考虑了人类可以提供的必要知识,并讨论了未来更好地理解实践和开发辅助工具的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A.I. Robustness: a Human-Centered Perspective on Technological Challenges and Opportunities

Despite the impressive performance of Artificial Intelligence (AI) systems, their robustness remains elusive and constitutes a key issue that impedes large-scale adoption. Besides, robustness is interpreted differently across domains and contexts of AI. In this work, we systematically survey recent progress to provide a reconciled terminology of concepts around AI robustness. We introduce three taxonomies to organize and describe the literature both from a fundamental and applied point of view: 1) methods and approaches that address robustness in different phases of the machine learning pipeline; 2) methods improving robustness in specific model architectures, tasks, and systems; and in addition, 3) methodologies and insights around evaluating the robustness of AI systems, particularly the trade-offs with other trustworthiness properties. Finally, we identify and discuss research gaps and opportunities and give an outlook on the field. We highlight the central role of humans in evaluating and enhancing AI robustness, considering the necessary knowledge they can provide, and discuss the need for better understanding practices and developing supportive tools in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信