全等覆盖中 k 维收缩的增长

IF 2.4 1区 数学 Q1 MATHEMATICS
Mikhail Belolipetsky, Shmuel Weinberger
{"title":"全等覆盖中 k 维收缩的增长","authors":"Mikhail Belolipetsky, Shmuel Weinberger","doi":"10.1007/s00039-024-00686-7","DOIUrl":null,"url":null,"abstract":"<p>We study growth of absolute and homological <i>k</i>-dimensional systoles of arithmetic <i>n</i>-manifolds along congruence coverings. Our main interest is in the growth of systoles of manifolds whose real rank <i>r</i>≥2. We observe, in particular, that in some cases for <i>k</i>=<i>r</i> the growth function tends to oscillate between a power of a logarithm and a power function of the degree of the covering. This is a new phenomenon. We also prove the expected polylogarithmic and constant power bounds for small and large <i>k</i>, respectively.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"44 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth of k-Dimensional Systoles in Congruence Coverings\",\"authors\":\"Mikhail Belolipetsky, Shmuel Weinberger\",\"doi\":\"10.1007/s00039-024-00686-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study growth of absolute and homological <i>k</i>-dimensional systoles of arithmetic <i>n</i>-manifolds along congruence coverings. Our main interest is in the growth of systoles of manifolds whose real rank <i>r</i>≥2. We observe, in particular, that in some cases for <i>k</i>=<i>r</i> the growth function tends to oscillate between a power of a logarithm and a power function of the degree of the covering. This is a new phenomenon. We also prove the expected polylogarithmic and constant power bounds for small and large <i>k</i>, respectively.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00686-7\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00686-7","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究算术 n 维流形的绝对和同调 k 维系统沿全等覆盖的增长。我们的主要兴趣在于实阶 r≥2 的流形的增量。我们特别观察到,在 k=r 的某些情况下,增长函数趋向于在对数的幂函数和覆盖度的幂函数之间摇摆。这是一个新现象。我们还分别证明了小 k 和大 k 的预期多对数和常数幂边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Growth of k-Dimensional Systoles in Congruence Coverings

Growth of k-Dimensional Systoles in Congruence Coverings

We study growth of absolute and homological k-dimensional systoles of arithmetic n-manifolds along congruence coverings. Our main interest is in the growth of systoles of manifolds whose real rank r≥2. We observe, in particular, that in some cases for k=r the growth function tends to oscillate between a power of a logarithm and a power function of the degree of the covering. This is a new phenomenon. We also prove the expected polylogarithmic and constant power bounds for small and large k, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信