非牛顿流体构成模型综述

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
HongGuang Sun, Yuehua Jiang, Yong Zhang, Lijuan Jiang
{"title":"非牛顿流体构成模型综述","authors":"HongGuang Sun, Yuehua Jiang, Yong Zhang, Lijuan Jiang","doi":"10.1007/s13540-024-00294-0","DOIUrl":null,"url":null,"abstract":"<p>Various constitutive models have been proposed to quantify a wide range of non-Newtonian fluids, but there is lack of a systematic classification and evaluation of these competing models, such as the quantitative comparison between the classical integer-order constitutive models and the newly proposed fractional derivative equations for non-Newtonian fluids. This study reviews constitutive equation models for non-Newtonian fluids, including time-independent fluids, viscoelastic fluids, and time-dependent fluids. A comparison between fractional derivative non-Newtonian fluid constitutive equations and traditional constitutive equations is also provided. Results show that the space fractional derivative model is equivalent to some classical constitutive models under reasonable assumptions. Further discussions are made from the perspective of the industrial and biomedical applications of non-Newtonian fluids. Advantages and limitations of the constitutive models are also explored to help users to select proper models for real-world applications.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of constitutive models for non-Newtonian fluids\",\"authors\":\"HongGuang Sun, Yuehua Jiang, Yong Zhang, Lijuan Jiang\",\"doi\":\"10.1007/s13540-024-00294-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Various constitutive models have been proposed to quantify a wide range of non-Newtonian fluids, but there is lack of a systematic classification and evaluation of these competing models, such as the quantitative comparison between the classical integer-order constitutive models and the newly proposed fractional derivative equations for non-Newtonian fluids. This study reviews constitutive equation models for non-Newtonian fluids, including time-independent fluids, viscoelastic fluids, and time-dependent fluids. A comparison between fractional derivative non-Newtonian fluid constitutive equations and traditional constitutive equations is also provided. Results show that the space fractional derivative model is equivalent to some classical constitutive models under reasonable assumptions. Further discussions are made from the perspective of the industrial and biomedical applications of non-Newtonian fluids. Advantages and limitations of the constitutive models are also explored to help users to select proper models for real-world applications.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00294-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00294-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

人们提出了各种构成模型来量化各种非牛顿流体,但对这些相互竞争的模型缺乏系统的分类和评估,例如经典整阶构成模型与新提出的非牛顿流体分数导数方程之间的定量比较。本研究回顾了非牛顿流体的构成方程模型,包括与时间无关的流体、粘弹性流体和与时间有关的流体。还对分数导数非牛顿流体构成方程和传统构成方程进行了比较。结果表明,在合理的假设条件下,空间分数导数模型等同于一些经典的构成模型。还从非牛顿流体的工业和生物医学应用角度进行了进一步讨论。此外,还探讨了构成模型的优势和局限性,以帮助用户为实际应用选择合适的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A review of constitutive models for non-Newtonian fluids

A review of constitutive models for non-Newtonian fluids

Various constitutive models have been proposed to quantify a wide range of non-Newtonian fluids, but there is lack of a systematic classification and evaluation of these competing models, such as the quantitative comparison between the classical integer-order constitutive models and the newly proposed fractional derivative equations for non-Newtonian fluids. This study reviews constitutive equation models for non-Newtonian fluids, including time-independent fluids, viscoelastic fluids, and time-dependent fluids. A comparison between fractional derivative non-Newtonian fluid constitutive equations and traditional constitutive equations is also provided. Results show that the space fractional derivative model is equivalent to some classical constitutive models under reasonable assumptions. Further discussions are made from the perspective of the industrial and biomedical applications of non-Newtonian fluids. Advantages and limitations of the constitutive models are also explored to help users to select proper models for real-world applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信