HIDE:针对多视角三维人体参数回归的分层迭代解码增强技术

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Weitao Lin, Jiguang Zhang, Weiliang Meng, Xianglong Liu, Xiaopeng Zhang
{"title":"HIDE:针对多视角三维人体参数回归的分层迭代解码增强技术","authors":"Weitao Lin,&nbsp;Jiguang Zhang,&nbsp;Weiliang Meng,&nbsp;Xianglong Liu,&nbsp;Xiaopeng Zhang","doi":"10.1002/cav.2266","DOIUrl":null,"url":null,"abstract":"<p>Parametric human modeling are limited to either single-view frameworks or simple multi-view frameworks, failing to fully leverage the advantages of easily trainable single-view networks and the occlusion-resistant capabilities of multi-view images. The prevalent presence of object occlusion and self-occlusion in real-world scenarios leads to issues of robustness and accuracy in predicting human body parameters. Additionally, many methods overlook the spatial connectivity of human joints in the global estimation of model pose parameters, resulting in cumulative errors in continuous joint parameters.To address these challenges, we propose a flexible and efficient iterative decoding strategy. By extending from single-view images to multi-view video inputs, we achieve local-to-global optimization. We utilize attention mechanisms to capture the rotational dependencies between any node in the human body and all its ancestor nodes, thereby enhancing pose decoding capability. We employ a parameter-level iterative fusion of multi-view image data to achieve flexible integration of global pose information, rapidly obtaining appropriate projection features from different viewpoints, ultimately resulting in precise parameter estimation. Through experiments, we validate the effectiveness of the HIDE method on the Human3.6M and 3DPW datasets, demonstrating significantly improved visualization results compared to previous methods.</p>","PeriodicalId":50645,"journal":{"name":"Computer Animation and Virtual Worlds","volume":"35 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HIDE: Hierarchical iterative decoding enhancement for multi-view 3D human parameter regression\",\"authors\":\"Weitao Lin,&nbsp;Jiguang Zhang,&nbsp;Weiliang Meng,&nbsp;Xianglong Liu,&nbsp;Xiaopeng Zhang\",\"doi\":\"10.1002/cav.2266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Parametric human modeling are limited to either single-view frameworks or simple multi-view frameworks, failing to fully leverage the advantages of easily trainable single-view networks and the occlusion-resistant capabilities of multi-view images. The prevalent presence of object occlusion and self-occlusion in real-world scenarios leads to issues of robustness and accuracy in predicting human body parameters. Additionally, many methods overlook the spatial connectivity of human joints in the global estimation of model pose parameters, resulting in cumulative errors in continuous joint parameters.To address these challenges, we propose a flexible and efficient iterative decoding strategy. By extending from single-view images to multi-view video inputs, we achieve local-to-global optimization. We utilize attention mechanisms to capture the rotational dependencies between any node in the human body and all its ancestor nodes, thereby enhancing pose decoding capability. We employ a parameter-level iterative fusion of multi-view image data to achieve flexible integration of global pose information, rapidly obtaining appropriate projection features from different viewpoints, ultimately resulting in precise parameter estimation. Through experiments, we validate the effectiveness of the HIDE method on the Human3.6M and 3DPW datasets, demonstrating significantly improved visualization results compared to previous methods.</p>\",\"PeriodicalId\":50645,\"journal\":{\"name\":\"Computer Animation and Virtual Worlds\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Animation and Virtual Worlds\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cav.2266\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Animation and Virtual Worlds","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cav.2266","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

参数化人体建模局限于单视角框架或简单的多视角框架,未能充分利用易于训练的单视角网络的优势和多视角图像的抗遮挡能力。在现实世界中,物体遮挡和自我遮挡的普遍存在导致了预测人体参数的鲁棒性和准确性问题。此外,许多方法在全局估计模型姿势参数时忽略了人体关节的空间连通性,导致连续关节参数的累积误差。通过从单视角图像扩展到多视角视频输入,我们实现了从局部到全局的优化。我们利用注意力机制来捕捉人体中任何节点与其所有祖先节点之间的旋转依赖关系,从而增强姿势解码能力。我们采用参数级迭代融合多视角图像数据的方法,灵活整合全局姿态信息,从不同视角快速获取合适的投影特征,最终实现精确的参数估计。通过实验,我们在 Human3.6M 和 3DPW 数据集上验证了 HIDE 方法的有效性,与之前的方法相比,可视化效果有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HIDE: Hierarchical iterative decoding enhancement for multi-view 3D human parameter regression

Parametric human modeling are limited to either single-view frameworks or simple multi-view frameworks, failing to fully leverage the advantages of easily trainable single-view networks and the occlusion-resistant capabilities of multi-view images. The prevalent presence of object occlusion and self-occlusion in real-world scenarios leads to issues of robustness and accuracy in predicting human body parameters. Additionally, many methods overlook the spatial connectivity of human joints in the global estimation of model pose parameters, resulting in cumulative errors in continuous joint parameters.To address these challenges, we propose a flexible and efficient iterative decoding strategy. By extending from single-view images to multi-view video inputs, we achieve local-to-global optimization. We utilize attention mechanisms to capture the rotational dependencies between any node in the human body and all its ancestor nodes, thereby enhancing pose decoding capability. We employ a parameter-level iterative fusion of multi-view image data to achieve flexible integration of global pose information, rapidly obtaining appropriate projection features from different viewpoints, ultimately resulting in precise parameter estimation. Through experiments, we validate the effectiveness of the HIDE method on the Human3.6M and 3DPW datasets, demonstrating significantly improved visualization results compared to previous methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Animation and Virtual Worlds
Computer Animation and Virtual Worlds 工程技术-计算机:软件工程
CiteScore
2.20
自引率
0.00%
发文量
90
审稿时长
6-12 weeks
期刊介绍: With the advent of very powerful PCs and high-end graphics cards, there has been an incredible development in Virtual Worlds, real-time computer animation and simulation, games. But at the same time, new and cheaper Virtual Reality devices have appeared allowing an interaction with these real-time Virtual Worlds and even with real worlds through Augmented Reality. Three-dimensional characters, especially Virtual Humans are now of an exceptional quality, which allows to use them in the movie industry. But this is only a beginning, as with the development of Artificial Intelligence and Agent technology, these characters will become more and more autonomous and even intelligent. They will inhabit the Virtual Worlds in a Virtual Life together with animals and plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信