改进的卷积神经网络算法在文本分类中的应用

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Jing Peng;Shuquan Huo
{"title":"改进的卷积神经网络算法在文本分类中的应用","authors":"Jing Peng;Shuquan Huo","doi":"10.13052/jwe1540-9589.2331","DOIUrl":null,"url":null,"abstract":"This paper proposes a text classification model based on a combination of a convolutional neural network (CNN) and a support vector machine (SVM) using Amazon review polarity, TREC, and Kaggle as experimental data. By adding an attention mechanism to simplify the parameters and using the classifier based on SVM to replace the Softmax layer, the extraction effect of feature words is improved and the problem of weak generalization ability of the CNN model is solved. Simulation experiments show that the proposed algorithm performs better in precision rate, recall rate, F1 value, and training time compared with CNN, RNN, BERT and term frequency-inverse document frequency (TF-IDF).","PeriodicalId":49952,"journal":{"name":"Journal of Web Engineering","volume":"23 3","pages":"315-339"},"PeriodicalIF":0.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10547278","citationCount":"0","resultStr":"{\"title\":\"Application of an Improved Convolutional Neural Network Algorithm in Text Classification\",\"authors\":\"Jing Peng;Shuquan Huo\",\"doi\":\"10.13052/jwe1540-9589.2331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a text classification model based on a combination of a convolutional neural network (CNN) and a support vector machine (SVM) using Amazon review polarity, TREC, and Kaggle as experimental data. By adding an attention mechanism to simplify the parameters and using the classifier based on SVM to replace the Softmax layer, the extraction effect of feature words is improved and the problem of weak generalization ability of the CNN model is solved. Simulation experiments show that the proposed algorithm performs better in precision rate, recall rate, F1 value, and training time compared with CNN, RNN, BERT and term frequency-inverse document frequency (TF-IDF).\",\"PeriodicalId\":49952,\"journal\":{\"name\":\"Journal of Web Engineering\",\"volume\":\"23 3\",\"pages\":\"315-339\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10547278\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Web Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10547278/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10547278/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文以亚马逊评论极性、TREC 和 Kaggle 为实验数据,提出了一种基于卷积神经网络(CNN)和支持向量机(SVM)组合的文本分类模型。通过添加注意力机制简化参数,以及使用基于 SVM 的分类器取代 Softmax 层,提高了特征词的提取效果,并解决了 CNN 模型泛化能力弱的问题。仿真实验表明,与 CNN、RNN、BERT 和词频-反向文档频率(TF-IDF)相比,所提出的算法在精确率、召回率、F1 值和训练时间方面都有更好的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of an Improved Convolutional Neural Network Algorithm in Text Classification
This paper proposes a text classification model based on a combination of a convolutional neural network (CNN) and a support vector machine (SVM) using Amazon review polarity, TREC, and Kaggle as experimental data. By adding an attention mechanism to simplify the parameters and using the classifier based on SVM to replace the Softmax layer, the extraction effect of feature words is improved and the problem of weak generalization ability of the CNN model is solved. Simulation experiments show that the proposed algorithm performs better in precision rate, recall rate, F1 value, and training time compared with CNN, RNN, BERT and term frequency-inverse document frequency (TF-IDF).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Web Engineering
Journal of Web Engineering 工程技术-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
62
审稿时长
9 months
期刊介绍: The World Wide Web and its associated technologies have become a major implementation and delivery platform for a large variety of applications, ranging from simple institutional information Web sites to sophisticated supply-chain management systems, financial applications, e-government, distance learning, and entertainment, among others. Such applications, in addition to their intrinsic functionality, also exhibit the more complex behavior of distributed applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信