利用贝叶斯模型提高疾病负担测量的时空分辨率

IF 2.1 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
James Hogg , Kerry Staples , Alisha Davis , Susanna Cramb , Candice Patterson , Laura Kirkland , Michelle Gourley , Jianguo Xiao , Wendy Sun
{"title":"利用贝叶斯模型提高疾病负担测量的时空分辨率","authors":"James Hogg ,&nbsp;Kerry Staples ,&nbsp;Alisha Davis ,&nbsp;Susanna Cramb ,&nbsp;Candice Patterson ,&nbsp;Laura Kirkland ,&nbsp;Michelle Gourley ,&nbsp;Jianguo Xiao ,&nbsp;Wendy Sun","doi":"10.1016/j.sste.2024.100663","DOIUrl":null,"url":null,"abstract":"<div><p>This paper contributes to the field by addressing the critical issue of enhancing the spatial and temporal resolution of health data. Although Bayesian methods are frequently employed to address this challenge in various disciplines, the application of Bayesian spatio-temporal models to burden of disease (BOD) studies remains limited. Our novelty lies in the exploration of two existing Bayesian models that we show to be applicable to a wide range of BOD data, including mortality and prevalence, thereby providing evidence to support the adoption of Bayesian modeling in full BOD studies in the future. We illustrate the benefits of Bayesian modeling with an Australian case study involving asthma and coronary heart disease. Our results showcase the effectiveness of Bayesian approaches in increasing the number of small areas for which results are available and improving the reliability and stability of the results compared to using data directly from surveys or administrative sources.</p></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"49 ","pages":"Article 100663"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877584524000303/pdfft?md5=b3ba22d405646c7a9d07dd0ece1b27c6&pid=1-s2.0-S1877584524000303-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Improving the spatial and temporal resolution of burden of disease measures with Bayesian models\",\"authors\":\"James Hogg ,&nbsp;Kerry Staples ,&nbsp;Alisha Davis ,&nbsp;Susanna Cramb ,&nbsp;Candice Patterson ,&nbsp;Laura Kirkland ,&nbsp;Michelle Gourley ,&nbsp;Jianguo Xiao ,&nbsp;Wendy Sun\",\"doi\":\"10.1016/j.sste.2024.100663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper contributes to the field by addressing the critical issue of enhancing the spatial and temporal resolution of health data. Although Bayesian methods are frequently employed to address this challenge in various disciplines, the application of Bayesian spatio-temporal models to burden of disease (BOD) studies remains limited. Our novelty lies in the exploration of two existing Bayesian models that we show to be applicable to a wide range of BOD data, including mortality and prevalence, thereby providing evidence to support the adoption of Bayesian modeling in full BOD studies in the future. We illustrate the benefits of Bayesian modeling with an Australian case study involving asthma and coronary heart disease. Our results showcase the effectiveness of Bayesian approaches in increasing the number of small areas for which results are available and improving the reliability and stability of the results compared to using data directly from surveys or administrative sources.</p></div>\",\"PeriodicalId\":46645,\"journal\":{\"name\":\"Spatial and Spatio-Temporal Epidemiology\",\"volume\":\"49 \",\"pages\":\"Article 100663\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1877584524000303/pdfft?md5=b3ba22d405646c7a9d07dd0ece1b27c6&pid=1-s2.0-S1877584524000303-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial and Spatio-Temporal Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877584524000303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584524000303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

本文通过解决提高健康数据时空分辨率这一关键问题,为该领域做出了贡献。虽然贝叶斯方法经常被用于应对各学科中的这一挑战,但贝叶斯时空模型在疾病负担(BOD)研究中的应用仍然有限。我们的新颖之处在于对现有的两个贝叶斯模型进行了探索,结果表明这两个模型适用于包括死亡率和患病率在内的各种疾病负担数据,从而为今后在全面的疾病负担研究中采用贝叶斯模型提供了证据支持。我们通过一个涉及哮喘和冠心病的澳大利亚案例研究来说明贝叶斯建模的好处。我们的研究结果表明,与直接使用调查或行政来源的数据相比,贝叶斯方法能有效增加可获得结果的小地区数量,并提高结果的可靠性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the spatial and temporal resolution of burden of disease measures with Bayesian models

This paper contributes to the field by addressing the critical issue of enhancing the spatial and temporal resolution of health data. Although Bayesian methods are frequently employed to address this challenge in various disciplines, the application of Bayesian spatio-temporal models to burden of disease (BOD) studies remains limited. Our novelty lies in the exploration of two existing Bayesian models that we show to be applicable to a wide range of BOD data, including mortality and prevalence, thereby providing evidence to support the adoption of Bayesian modeling in full BOD studies in the future. We illustrate the benefits of Bayesian modeling with an Australian case study involving asthma and coronary heart disease. Our results showcase the effectiveness of Bayesian approaches in increasing the number of small areas for which results are available and improving the reliability and stability of the results compared to using data directly from surveys or administrative sources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信