A. Poobalan , K. Ganapriya , K. Kalaivani , K. Parthiban
{"title":"利用双向长短期记忆的深度神经网络实现新颖安全的电子邮件分类","authors":"A. Poobalan , K. Ganapriya , K. Kalaivani , K. Parthiban","doi":"10.1016/j.csl.2024.101667","DOIUrl":null,"url":null,"abstract":"<div><p>Email data has some characteristics that are different from other social media data, such as a large range of answers, formal language, notable length variations, high degrees of anomalies, and indirect relationships. The main goal in this research is to develop a robust and computationally efficient classifier that can distinguish between spam and regular email content. The benchmark Enron dataset, which is accessible to the public, was used for the tests. The six distinct Enron data sets we acquired were combined to generate the final seven Enron data sets. The dataset undergoes early preprocessing to remove superfluous sentences. The proposed model Bidirectional Long Short-Term Memory (BiLSTM) apply spam labels and to examine email documents for spam. On seven Enron datasets, DNN-BiLSTM performs better than other classifiers in the performance comparison in terms of accuracy. DNN-BiLSTM and convolutional neural networks demonstrated that they can classify spam with 96.39 % and 98.69 % accuracy, respectively, in comparison to other machine learning classifiers. The risks associated with cloud data management and potential security flaws are also covered in the paper. This research presents hybrid encryption as a means of protecting cloud data while preserving privacy by using the hybrid AES-Rabit encryption algorithm which is based on symmetric session key exchange.</p></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"89 ","pages":"Article 101667"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885230824000500/pdfft?md5=93a3ab04f63a63c4343031dc3b1f9eca&pid=1-s2.0-S0885230824000500-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel and secured email classification using deep neural network with bidirectional long short-term memory\",\"authors\":\"A. Poobalan , K. Ganapriya , K. Kalaivani , K. Parthiban\",\"doi\":\"10.1016/j.csl.2024.101667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Email data has some characteristics that are different from other social media data, such as a large range of answers, formal language, notable length variations, high degrees of anomalies, and indirect relationships. The main goal in this research is to develop a robust and computationally efficient classifier that can distinguish between spam and regular email content. The benchmark Enron dataset, which is accessible to the public, was used for the tests. The six distinct Enron data sets we acquired were combined to generate the final seven Enron data sets. The dataset undergoes early preprocessing to remove superfluous sentences. The proposed model Bidirectional Long Short-Term Memory (BiLSTM) apply spam labels and to examine email documents for spam. On seven Enron datasets, DNN-BiLSTM performs better than other classifiers in the performance comparison in terms of accuracy. DNN-BiLSTM and convolutional neural networks demonstrated that they can classify spam with 96.39 % and 98.69 % accuracy, respectively, in comparison to other machine learning classifiers. The risks associated with cloud data management and potential security flaws are also covered in the paper. This research presents hybrid encryption as a means of protecting cloud data while preserving privacy by using the hybrid AES-Rabit encryption algorithm which is based on symmetric session key exchange.</p></div>\",\"PeriodicalId\":50638,\"journal\":{\"name\":\"Computer Speech and Language\",\"volume\":\"89 \",\"pages\":\"Article 101667\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0885230824000500/pdfft?md5=93a3ab04f63a63c4343031dc3b1f9eca&pid=1-s2.0-S0885230824000500-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Speech and Language\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885230824000500\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Speech and Language","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885230824000500","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A novel and secured email classification using deep neural network with bidirectional long short-term memory
Email data has some characteristics that are different from other social media data, such as a large range of answers, formal language, notable length variations, high degrees of anomalies, and indirect relationships. The main goal in this research is to develop a robust and computationally efficient classifier that can distinguish between spam and regular email content. The benchmark Enron dataset, which is accessible to the public, was used for the tests. The six distinct Enron data sets we acquired were combined to generate the final seven Enron data sets. The dataset undergoes early preprocessing to remove superfluous sentences. The proposed model Bidirectional Long Short-Term Memory (BiLSTM) apply spam labels and to examine email documents for spam. On seven Enron datasets, DNN-BiLSTM performs better than other classifiers in the performance comparison in terms of accuracy. DNN-BiLSTM and convolutional neural networks demonstrated that they can classify spam with 96.39 % and 98.69 % accuracy, respectively, in comparison to other machine learning classifiers. The risks associated with cloud data management and potential security flaws are also covered in the paper. This research presents hybrid encryption as a means of protecting cloud data while preserving privacy by using the hybrid AES-Rabit encryption algorithm which is based on symmetric session key exchange.
期刊介绍:
Computer Speech & Language publishes reports of original research related to the recognition, understanding, production, coding and mining of speech and language.
The speech and language sciences have a long history, but it is only relatively recently that large-scale implementation of and experimentation with complex models of speech and language processing has become feasible. Such research is often carried out somewhat separately by practitioners of artificial intelligence, computer science, electronic engineering, information retrieval, linguistics, phonetics, or psychology.