Peiyuan Lin , Meiyue Ding , Haipeng Liu , Yuepeng Liu , Kai Wang
{"title":"用有限元法预测海上风力涡轮机单桩水平位移的统计精度","authors":"Peiyuan Lin , Meiyue Ding , Haipeng Liu , Yuepeng Liu , Kai Wang","doi":"10.1016/j.marstruc.2024.103641","DOIUrl":null,"url":null,"abstract":"<div><p>Large-diameter steel pipe pile foundations are widely used to support offshore wind turbines subjected to horizontal loads during operation. The pile horizontal displacement must be restricted within a certain value to ensure its safety. Therefore, an accurate prediction of pile horizontal displacement is of great significance. The finite element method (FEM) has been prevailing in such prediction, with its accuracy remaining unquantified. This study compiles a large database containing 959 pile horizontal displacement measurements from 14 offshore wind turbines. Numerical models are then built using FEM to predict horizontal displacements of these piles. A bias defined as the ratio of measured to predicted horizontal displacement is used to quantify the accuracy of the FEM. Results showed that the FEM is moderately risky as it underestimates the pile horizontal displacement by about 40 % on average. The dispersion in prediction accuracy is about 40 % ranked as moderately dispersive. An empirical constant of 1.41 is introduced to the predicted displacement for model calibration, making the prediction unbiased on average. The probability density functions for the biases are characterized as 2-order Gaussian functions. Last, analysis of a monopile from a real project is presented to highlight the significance of the calibrated finite element model.</p></div>","PeriodicalId":49879,"journal":{"name":"Marine Structures","volume":"97 ","pages":"Article 103641"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical accuracy of finite element method in predicting horizontal displacement of monopiles for offshore wind turbines\",\"authors\":\"Peiyuan Lin , Meiyue Ding , Haipeng Liu , Yuepeng Liu , Kai Wang\",\"doi\":\"10.1016/j.marstruc.2024.103641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Large-diameter steel pipe pile foundations are widely used to support offshore wind turbines subjected to horizontal loads during operation. The pile horizontal displacement must be restricted within a certain value to ensure its safety. Therefore, an accurate prediction of pile horizontal displacement is of great significance. The finite element method (FEM) has been prevailing in such prediction, with its accuracy remaining unquantified. This study compiles a large database containing 959 pile horizontal displacement measurements from 14 offshore wind turbines. Numerical models are then built using FEM to predict horizontal displacements of these piles. A bias defined as the ratio of measured to predicted horizontal displacement is used to quantify the accuracy of the FEM. Results showed that the FEM is moderately risky as it underestimates the pile horizontal displacement by about 40 % on average. The dispersion in prediction accuracy is about 40 % ranked as moderately dispersive. An empirical constant of 1.41 is introduced to the predicted displacement for model calibration, making the prediction unbiased on average. The probability density functions for the biases are characterized as 2-order Gaussian functions. Last, analysis of a monopile from a real project is presented to highlight the significance of the calibrated finite element model.</p></div>\",\"PeriodicalId\":49879,\"journal\":{\"name\":\"Marine Structures\",\"volume\":\"97 \",\"pages\":\"Article 103641\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951833924000698\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951833924000698","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Statistical accuracy of finite element method in predicting horizontal displacement of monopiles for offshore wind turbines
Large-diameter steel pipe pile foundations are widely used to support offshore wind turbines subjected to horizontal loads during operation. The pile horizontal displacement must be restricted within a certain value to ensure its safety. Therefore, an accurate prediction of pile horizontal displacement is of great significance. The finite element method (FEM) has been prevailing in such prediction, with its accuracy remaining unquantified. This study compiles a large database containing 959 pile horizontal displacement measurements from 14 offshore wind turbines. Numerical models are then built using FEM to predict horizontal displacements of these piles. A bias defined as the ratio of measured to predicted horizontal displacement is used to quantify the accuracy of the FEM. Results showed that the FEM is moderately risky as it underestimates the pile horizontal displacement by about 40 % on average. The dispersion in prediction accuracy is about 40 % ranked as moderately dispersive. An empirical constant of 1.41 is introduced to the predicted displacement for model calibration, making the prediction unbiased on average. The probability density functions for the biases are characterized as 2-order Gaussian functions. Last, analysis of a monopile from a real project is presented to highlight the significance of the calibrated finite element model.
期刊介绍:
This journal aims to provide a medium for presentation and discussion of the latest developments in research, design, fabrication and in-service experience relating to marine structures, i.e., all structures of steel, concrete, light alloy or composite construction having an interface with the sea, including ships, fixed and mobile offshore platforms, submarine and submersibles, pipelines, subsea systems for shallow and deep ocean operations and coastal structures such as piers.