奇异度量的临界高斯乘法混沌

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Hubert Lacoin
{"title":"奇异度量的临界高斯乘法混沌","authors":"Hubert Lacoin","doi":"10.1016/j.spa.2024.104388","DOIUrl":null,"url":null,"abstract":"<div><p>Given <span><math><mrow><mi>d</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, we provide a construction of the random measure – the critical Gaussian Multiplicative Chaos – formally defined as <span><math><mrow><msup><mrow><mi>e</mi></mrow><mrow><msqrt><mrow><mn>2</mn><mi>d</mi></mrow></msqrt><mi>X</mi></mrow></msup><mi>d</mi><mi>μ</mi></mrow></math></span> where <span><math><mi>X</mi></math></span> is a <span><math><mo>log</mo></math></span>-correlated Gaussian field and <span><math><mi>μ</mi></math></span> is a locally finite measure on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. Our construction generalizes the one performed in the case where <span><math><mi>μ</mi></math></span> is the Lebesgue measure. It requires that the measure <span><math><mi>μ</mi></math></span> is sufficiently spread out, namely that for <span><math><mi>μ</mi></math></span> almost every <span><math><mi>x</mi></math></span> we have <span><math><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></msub><mfrac><mrow><mi>μ</mi><mrow><mo>(</mo><mi>d</mi><mi>y</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mi>ρ</mi><mfenced><mrow><mo>log</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mrow></mfrac></mrow></mfenced></mrow></msup></mrow></mfrac><mo>&lt;</mo><mi>∞</mi><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>ρ</mi><mo>:</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>→</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></math></span> can be chosen to be any lower envelope function for the 3-Bessel process (this includes <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>). We prove that three distinct random objects converge to a common limit which defines the critical GMC: the derivative martingale, the critical martingale, and the exponential of the mollified field. We also show that the above criterion for the measure <span><math><mi>μ</mi></math></span> is in a sense optimal.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"175 ","pages":"Article 104388"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical Gaussian multiplicative chaos for singular measures\",\"authors\":\"Hubert Lacoin\",\"doi\":\"10.1016/j.spa.2024.104388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given <span><math><mrow><mi>d</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, we provide a construction of the random measure – the critical Gaussian Multiplicative Chaos – formally defined as <span><math><mrow><msup><mrow><mi>e</mi></mrow><mrow><msqrt><mrow><mn>2</mn><mi>d</mi></mrow></msqrt><mi>X</mi></mrow></msup><mi>d</mi><mi>μ</mi></mrow></math></span> where <span><math><mi>X</mi></math></span> is a <span><math><mo>log</mo></math></span>-correlated Gaussian field and <span><math><mi>μ</mi></math></span> is a locally finite measure on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. Our construction generalizes the one performed in the case where <span><math><mi>μ</mi></math></span> is the Lebesgue measure. It requires that the measure <span><math><mi>μ</mi></math></span> is sufficiently spread out, namely that for <span><math><mi>μ</mi></math></span> almost every <span><math><mi>x</mi></math></span> we have <span><math><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></msub><mfrac><mrow><mi>μ</mi><mrow><mo>(</mo><mi>d</mi><mi>y</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mi>ρ</mi><mfenced><mrow><mo>log</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mrow></mfrac></mrow></mfenced></mrow></msup></mrow></mfrac><mo>&lt;</mo><mi>∞</mi><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>ρ</mi><mo>:</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>→</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></math></span> can be chosen to be any lower envelope function for the 3-Bessel process (this includes <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>). We prove that three distinct random objects converge to a common limit which defines the critical GMC: the derivative martingale, the critical martingale, and the exponential of the mollified field. We also show that the above criterion for the measure <span><math><mi>μ</mi></math></span> is in a sense optimal.</p></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"175 \",\"pages\":\"Article 104388\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924000942\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924000942","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

给定 d≥1,我们提供了一种随机度量的构造--临界高斯乘混沌--正式定义为 e2dXdμ,其中 X 是对数相关的高斯域,μ 是 Rd 上的局部有限度量。我们的构造概括了在μ 是 Lebesgue 度量的情况下所做的构造。它要求度量μ足够分散,即对于μ几乎每一个x,我们都有∫B(x,1)μ(dy)|x-y|deρlog1|x-y|<∞,其中ρ:R+→R+可以选择为3-贝塞尔过程的任何下包络函数(这包括α∈(0,1/2)的ρ(x)=xα)。我们证明了三个不同的随机对象会收敛到一个定义临界 GMC 的共同极限:导数鞅、临界鞅和鞅场的指数。我们还证明,上述关于度量 μ 的准则在某种意义上是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical Gaussian multiplicative chaos for singular measures

Given d1, we provide a construction of the random measure – the critical Gaussian Multiplicative Chaos – formally defined as e2dXdμ where X is a log-correlated Gaussian field and μ is a locally finite measure on Rd. Our construction generalizes the one performed in the case where μ is the Lebesgue measure. It requires that the measure μ is sufficiently spread out, namely that for μ almost every x we have B(x,1)μ(dy)|xy|deρlog1|xy|<, where ρ:R+R+ can be chosen to be any lower envelope function for the 3-Bessel process (this includes ρ(x)=xα with α(0,1/2)). We prove that three distinct random objects converge to a common limit which defines the critical GMC: the derivative martingale, the critical martingale, and the exponential of the mollified field. We also show that the above criterion for the measure μ is in a sense optimal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信