{"title":"奇异度量的临界高斯乘法混沌","authors":"Hubert Lacoin","doi":"10.1016/j.spa.2024.104388","DOIUrl":null,"url":null,"abstract":"<div><p>Given <span><math><mrow><mi>d</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, we provide a construction of the random measure – the critical Gaussian Multiplicative Chaos – formally defined as <span><math><mrow><msup><mrow><mi>e</mi></mrow><mrow><msqrt><mrow><mn>2</mn><mi>d</mi></mrow></msqrt><mi>X</mi></mrow></msup><mi>d</mi><mi>μ</mi></mrow></math></span> where <span><math><mi>X</mi></math></span> is a <span><math><mo>log</mo></math></span>-correlated Gaussian field and <span><math><mi>μ</mi></math></span> is a locally finite measure on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. Our construction generalizes the one performed in the case where <span><math><mi>μ</mi></math></span> is the Lebesgue measure. It requires that the measure <span><math><mi>μ</mi></math></span> is sufficiently spread out, namely that for <span><math><mi>μ</mi></math></span> almost every <span><math><mi>x</mi></math></span> we have <span><math><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></msub><mfrac><mrow><mi>μ</mi><mrow><mo>(</mo><mi>d</mi><mi>y</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mi>ρ</mi><mfenced><mrow><mo>log</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mrow></mfrac></mrow></mfenced></mrow></msup></mrow></mfrac><mo><</mo><mi>∞</mi><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>ρ</mi><mo>:</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>→</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></math></span> can be chosen to be any lower envelope function for the 3-Bessel process (this includes <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>). We prove that three distinct random objects converge to a common limit which defines the critical GMC: the derivative martingale, the critical martingale, and the exponential of the mollified field. We also show that the above criterion for the measure <span><math><mi>μ</mi></math></span> is in a sense optimal.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"175 ","pages":"Article 104388"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical Gaussian multiplicative chaos for singular measures\",\"authors\":\"Hubert Lacoin\",\"doi\":\"10.1016/j.spa.2024.104388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given <span><math><mrow><mi>d</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, we provide a construction of the random measure – the critical Gaussian Multiplicative Chaos – formally defined as <span><math><mrow><msup><mrow><mi>e</mi></mrow><mrow><msqrt><mrow><mn>2</mn><mi>d</mi></mrow></msqrt><mi>X</mi></mrow></msup><mi>d</mi><mi>μ</mi></mrow></math></span> where <span><math><mi>X</mi></math></span> is a <span><math><mo>log</mo></math></span>-correlated Gaussian field and <span><math><mi>μ</mi></math></span> is a locally finite measure on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. Our construction generalizes the one performed in the case where <span><math><mi>μ</mi></math></span> is the Lebesgue measure. It requires that the measure <span><math><mi>μ</mi></math></span> is sufficiently spread out, namely that for <span><math><mi>μ</mi></math></span> almost every <span><math><mi>x</mi></math></span> we have <span><math><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></msub><mfrac><mrow><mi>μ</mi><mrow><mo>(</mo><mi>d</mi><mi>y</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mi>ρ</mi><mfenced><mrow><mo>log</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mrow></mfrac></mrow></mfenced></mrow></msup></mrow></mfrac><mo><</mo><mi>∞</mi><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>ρ</mi><mo>:</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>→</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></math></span> can be chosen to be any lower envelope function for the 3-Bessel process (this includes <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>). We prove that three distinct random objects converge to a common limit which defines the critical GMC: the derivative martingale, the critical martingale, and the exponential of the mollified field. We also show that the above criterion for the measure <span><math><mi>μ</mi></math></span> is in a sense optimal.</p></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"175 \",\"pages\":\"Article 104388\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924000942\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924000942","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Critical Gaussian multiplicative chaos for singular measures
Given , we provide a construction of the random measure – the critical Gaussian Multiplicative Chaos – formally defined as where is a -correlated Gaussian field and is a locally finite measure on . Our construction generalizes the one performed in the case where is the Lebesgue measure. It requires that the measure is sufficiently spread out, namely that for almost every we have where can be chosen to be any lower envelope function for the 3-Bessel process (this includes with ). We prove that three distinct random objects converge to a common limit which defines the critical GMC: the derivative martingale, the critical martingale, and the exponential of the mollified field. We also show that the above criterion for the measure is in a sense optimal.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.