不同交界角 T 型入口微通道中液液分散模式的实验研究

IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL
Wang Cao , Qingjun Yang , Dongsheng Yang , Xuan Wang , Qi Mao
{"title":"不同交界角 T 型入口微通道中液液分散模式的实验研究","authors":"Wang Cao ,&nbsp;Qingjun Yang ,&nbsp;Dongsheng Yang ,&nbsp;Xuan Wang ,&nbsp;Qi Mao","doi":"10.1016/j.expthermflusci.2024.111243","DOIUrl":null,"url":null,"abstract":"<div><p>Liquid-liquid two-phase flow in T-inlet microchannels with different junction angles (<em>θ</em> = 30°, 60°, 90°, 120° and 150°) was investigated experimentally. Four flow regimes of the dispersed phase were identified, i.e., parallel flow, jetting, dripping and squeezing, and the distribution of flow regimes for the dispersed phase corresponding to variations in the junction angle was plotted. The consequences of varying junction angle and flow conditions in the squeezing regime on the generated droplet size were analyzed. The results indicate that low capillary number and large flow rate ratio are conducive to the formation of large-size droplets. For constant flow conditions, junction angle <em>θ</em> = 90° is detrimental to the formation of squeezing microdroplets. The increase in microchannel junction angle causes the droplet size to decrease until <em>θ</em> &gt; 90°, where the droplet size increases with the junction angle. On the basis of experimental results, the scaling law correlation equations containing the junction angle for predicting the droplet length and droplet volume are proposed, respectively. The predicted values match well with the experimental data. The results of this work contribute to the enhancement of the monodispersity of microdroplets and the precise control over a wide range of the generated droplet size by adjusting the junction angle.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"158 ","pages":"Article 111243"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study of liquid–liquid dispersion patterns in T-inlet microchannels with different junction angles\",\"authors\":\"Wang Cao ,&nbsp;Qingjun Yang ,&nbsp;Dongsheng Yang ,&nbsp;Xuan Wang ,&nbsp;Qi Mao\",\"doi\":\"10.1016/j.expthermflusci.2024.111243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Liquid-liquid two-phase flow in T-inlet microchannels with different junction angles (<em>θ</em> = 30°, 60°, 90°, 120° and 150°) was investigated experimentally. Four flow regimes of the dispersed phase were identified, i.e., parallel flow, jetting, dripping and squeezing, and the distribution of flow regimes for the dispersed phase corresponding to variations in the junction angle was plotted. The consequences of varying junction angle and flow conditions in the squeezing regime on the generated droplet size were analyzed. The results indicate that low capillary number and large flow rate ratio are conducive to the formation of large-size droplets. For constant flow conditions, junction angle <em>θ</em> = 90° is detrimental to the formation of squeezing microdroplets. The increase in microchannel junction angle causes the droplet size to decrease until <em>θ</em> &gt; 90°, where the droplet size increases with the junction angle. On the basis of experimental results, the scaling law correlation equations containing the junction angle for predicting the droplet length and droplet volume are proposed, respectively. The predicted values match well with the experimental data. The results of this work contribute to the enhancement of the monodispersity of microdroplets and the precise control over a wide range of the generated droplet size by adjusting the junction angle.</p></div>\",\"PeriodicalId\":12294,\"journal\":{\"name\":\"Experimental Thermal and Fluid Science\",\"volume\":\"158 \",\"pages\":\"Article 111243\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Thermal and Fluid Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0894177724001122\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177724001122","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

实验研究了不同交角(θ = 30°、60°、90°、120°和 150°)的 T 型入口微通道中的液液两相流。确定了分散相的四种流态,即平行流、喷射流、滴流和挤压流,并绘制了与交界角变化相对应的分散相流态分布图。分析了不同的交界角和挤压状态下的流动条件对产生的液滴大小的影响。结果表明,低毛细管数和大流速比有利于形成大尺寸液滴。在恒流条件下,交界角 θ = 90° 不利于挤压微液滴的形成。微通道交界角的增大导致液滴尺寸减小,直到 θ > 90°,液滴尺寸随交界角增大而增大。在实验结果的基础上,分别提出了预测液滴长度和液滴体积的包含交界角的缩放定律相关方程。预测值与实验数据非常吻合。这项工作的结果有助于提高微液滴的单分散性,并通过调整交界角在较大范围内精确控制生成的液滴大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Experimental study of liquid–liquid dispersion patterns in T-inlet microchannels with different junction angles

Experimental study of liquid–liquid dispersion patterns in T-inlet microchannels with different junction angles

Liquid-liquid two-phase flow in T-inlet microchannels with different junction angles (θ = 30°, 60°, 90°, 120° and 150°) was investigated experimentally. Four flow regimes of the dispersed phase were identified, i.e., parallel flow, jetting, dripping and squeezing, and the distribution of flow regimes for the dispersed phase corresponding to variations in the junction angle was plotted. The consequences of varying junction angle and flow conditions in the squeezing regime on the generated droplet size were analyzed. The results indicate that low capillary number and large flow rate ratio are conducive to the formation of large-size droplets. For constant flow conditions, junction angle θ = 90° is detrimental to the formation of squeezing microdroplets. The increase in microchannel junction angle causes the droplet size to decrease until θ > 90°, where the droplet size increases with the junction angle. On the basis of experimental results, the scaling law correlation equations containing the junction angle for predicting the droplet length and droplet volume are proposed, respectively. The predicted values match well with the experimental data. The results of this work contribute to the enhancement of the monodispersity of microdroplets and the precise control over a wide range of the generated droplet size by adjusting the junction angle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信