Alyssa K Kuhn, Meina L Determan, Jessica A Wright, Eric Matey, Jonathan G Leung
{"title":"已知药物基因组状态的患者服用含雌激素口服避孕药对氯氮平代谢的潜在影响。","authors":"Alyssa K Kuhn, Meina L Determan, Jessica A Wright, Eric Matey, Jonathan G Leung","doi":"10.9740/mhc.2024.06.220","DOIUrl":null,"url":null,"abstract":"<p><p>Clozapine is primarily metabolized via cytochrome P450(CYP)1A2 and to a lesser extent CYP3A4, CYP2C19, and CYP2D6. Metabolic inhibitors of clozapine, such as fluvoxamine and ciprofloxacin, are important to recognize to avoid adverse drug events. Estrogen-containing oral contraceptives (eOCPs) are weaker CYP1A2 and CYP2C19 inhibitors but are associated with a 2-fold increase of clozapine concentrations. The potential for phenoconversion due to a CYP genetic polymorphism can add additional complexities when considering drug interactions. A case report is presented of a suspected interaction between newly initiated clozapine and a prescribed eOCP for which the patient's pharmacogenomic status was known. A 17-year-old, nonsmoking, White female with a history of schizophrenia was initiated on clozapine 12.5 mg at bedtime with a plan to increase by 25 mg every 4 days in the outpatient setting. The patient was a known rapid CYP1A2 metabolizer without identified sources of CYP1A2 induction and a CYP2C19 rapid metabolizer. Based on pharmacogenomic testing, there was no suspicion for significant gene-drug interactions. Yet, as the patient was prescribed an eOCP, a clozapine concentration was obtained after reaching 150 mg at bedtime. This steady-state clozapine concentration was found to be 560 ng/mL, correlating with worsening sedation and constipation. Given ongoing side effects, clozapine was lowered to 100 mg at bedtime; however, ongoing intolerance ultimately led to clozapine discontinuation. This case highlights the potential interaction between clozapine and eOCP in a CYP1A2 and CYP2C19 rapid metabolizer, leading to clozapine intolerance and discontinuation. The concomitant use of clozapine and eOCPs should be undertaken judiciously.</p>","PeriodicalId":101313,"journal":{"name":"The mental health clinician","volume":"14 3","pages":"220-223"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11147657/pdf/","citationCount":"0","resultStr":"{\"title\":\"The potential influence of estrogen-containing oral contraception on clozapine metabolism in a patient with known pharmacogenomic status.\",\"authors\":\"Alyssa K Kuhn, Meina L Determan, Jessica A Wright, Eric Matey, Jonathan G Leung\",\"doi\":\"10.9740/mhc.2024.06.220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clozapine is primarily metabolized via cytochrome P450(CYP)1A2 and to a lesser extent CYP3A4, CYP2C19, and CYP2D6. Metabolic inhibitors of clozapine, such as fluvoxamine and ciprofloxacin, are important to recognize to avoid adverse drug events. Estrogen-containing oral contraceptives (eOCPs) are weaker CYP1A2 and CYP2C19 inhibitors but are associated with a 2-fold increase of clozapine concentrations. The potential for phenoconversion due to a CYP genetic polymorphism can add additional complexities when considering drug interactions. A case report is presented of a suspected interaction between newly initiated clozapine and a prescribed eOCP for which the patient's pharmacogenomic status was known. A 17-year-old, nonsmoking, White female with a history of schizophrenia was initiated on clozapine 12.5 mg at bedtime with a plan to increase by 25 mg every 4 days in the outpatient setting. The patient was a known rapid CYP1A2 metabolizer without identified sources of CYP1A2 induction and a CYP2C19 rapid metabolizer. Based on pharmacogenomic testing, there was no suspicion for significant gene-drug interactions. Yet, as the patient was prescribed an eOCP, a clozapine concentration was obtained after reaching 150 mg at bedtime. This steady-state clozapine concentration was found to be 560 ng/mL, correlating with worsening sedation and constipation. Given ongoing side effects, clozapine was lowered to 100 mg at bedtime; however, ongoing intolerance ultimately led to clozapine discontinuation. This case highlights the potential interaction between clozapine and eOCP in a CYP1A2 and CYP2C19 rapid metabolizer, leading to clozapine intolerance and discontinuation. The concomitant use of clozapine and eOCPs should be undertaken judiciously.</p>\",\"PeriodicalId\":101313,\"journal\":{\"name\":\"The mental health clinician\",\"volume\":\"14 3\",\"pages\":\"220-223\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11147657/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The mental health clinician\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9740/mhc.2024.06.220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The mental health clinician","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9740/mhc.2024.06.220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
The potential influence of estrogen-containing oral contraception on clozapine metabolism in a patient with known pharmacogenomic status.
Clozapine is primarily metabolized via cytochrome P450(CYP)1A2 and to a lesser extent CYP3A4, CYP2C19, and CYP2D6. Metabolic inhibitors of clozapine, such as fluvoxamine and ciprofloxacin, are important to recognize to avoid adverse drug events. Estrogen-containing oral contraceptives (eOCPs) are weaker CYP1A2 and CYP2C19 inhibitors but are associated with a 2-fold increase of clozapine concentrations. The potential for phenoconversion due to a CYP genetic polymorphism can add additional complexities when considering drug interactions. A case report is presented of a suspected interaction between newly initiated clozapine and a prescribed eOCP for which the patient's pharmacogenomic status was known. A 17-year-old, nonsmoking, White female with a history of schizophrenia was initiated on clozapine 12.5 mg at bedtime with a plan to increase by 25 mg every 4 days in the outpatient setting. The patient was a known rapid CYP1A2 metabolizer without identified sources of CYP1A2 induction and a CYP2C19 rapid metabolizer. Based on pharmacogenomic testing, there was no suspicion for significant gene-drug interactions. Yet, as the patient was prescribed an eOCP, a clozapine concentration was obtained after reaching 150 mg at bedtime. This steady-state clozapine concentration was found to be 560 ng/mL, correlating with worsening sedation and constipation. Given ongoing side effects, clozapine was lowered to 100 mg at bedtime; however, ongoing intolerance ultimately led to clozapine discontinuation. This case highlights the potential interaction between clozapine and eOCP in a CYP1A2 and CYP2C19 rapid metabolizer, leading to clozapine intolerance and discontinuation. The concomitant use of clozapine and eOCPs should be undertaken judiciously.