{"title":"精神分裂症 P300 时变定向电子脑电图网络中试验到试验之间的异常变异。","authors":"Chanlin Yi, Fali Li, Jiuju Wang, Yuqin Li, Jiamin Zhang, Wanjun Chen, Lin Jiang, Dezhong Yao, Peng Xu, Baoming He, Wentian Dong","doi":"10.1007/s11517-024-03133-9","DOIUrl":null,"url":null,"abstract":"<p><p>Cognitive disturbance in identifying, processing, and responding to salient or novel stimuli are typical attributes of schizophrenia (SCH), and P300 has been proven to serve as a reliable psychosis endophenotype. The instability of neural processing across trials, i.e., trial-to-trial variability (TTV), is getting increasing attention in uncovering how the SCH \"noisy\" brain organizes during cognition processes. Nevertheless, the TTV in the brain network remains unrevealed, notably how it varies in different task stages. In this study, resorting to the time-varying directed electroencephalogram (EEG) network, we investigated the time-resolved TTV of the functional organizations subserving the evoking of P300. Results revealed anomalous TTV in time-varying networks across the delta, theta, alpha, beta1, and beta2 bands of SCH. The TTV of cross-band time-varying network properties can efficiently recognize SCH (accuracy: 83.39%, sensitivity: 89.22%, and specificity: 74.55%) and evaluate the psychiatric symptoms (i.e., Hamilton's depression scale-24, r = 0.430, p = 0.022, RMSE = 4.891; Hamilton's anxiety scale-14, r = 0.377, p = 0.048, RMSE = 4.575). Our study brings new insights into probing the time-resolved functional organization of the brain, and TTV in time-varying networks may provide a powerful tool for mining the substrates accounting for SCH and diagnostic evaluation of SCH.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abnormal trial-to-trial variability in P300 time-varying directed eeg network of schizophrenia.\",\"authors\":\"Chanlin Yi, Fali Li, Jiuju Wang, Yuqin Li, Jiamin Zhang, Wanjun Chen, Lin Jiang, Dezhong Yao, Peng Xu, Baoming He, Wentian Dong\",\"doi\":\"10.1007/s11517-024-03133-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cognitive disturbance in identifying, processing, and responding to salient or novel stimuli are typical attributes of schizophrenia (SCH), and P300 has been proven to serve as a reliable psychosis endophenotype. The instability of neural processing across trials, i.e., trial-to-trial variability (TTV), is getting increasing attention in uncovering how the SCH \\\"noisy\\\" brain organizes during cognition processes. Nevertheless, the TTV in the brain network remains unrevealed, notably how it varies in different task stages. In this study, resorting to the time-varying directed electroencephalogram (EEG) network, we investigated the time-resolved TTV of the functional organizations subserving the evoking of P300. Results revealed anomalous TTV in time-varying networks across the delta, theta, alpha, beta1, and beta2 bands of SCH. The TTV of cross-band time-varying network properties can efficiently recognize SCH (accuracy: 83.39%, sensitivity: 89.22%, and specificity: 74.55%) and evaluate the psychiatric symptoms (i.e., Hamilton's depression scale-24, r = 0.430, p = 0.022, RMSE = 4.891; Hamilton's anxiety scale-14, r = 0.377, p = 0.048, RMSE = 4.575). Our study brings new insights into probing the time-resolved functional organization of the brain, and TTV in time-varying networks may provide a powerful tool for mining the substrates accounting for SCH and diagnostic evaluation of SCH.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03133-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03133-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Abnormal trial-to-trial variability in P300 time-varying directed eeg network of schizophrenia.
Cognitive disturbance in identifying, processing, and responding to salient or novel stimuli are typical attributes of schizophrenia (SCH), and P300 has been proven to serve as a reliable psychosis endophenotype. The instability of neural processing across trials, i.e., trial-to-trial variability (TTV), is getting increasing attention in uncovering how the SCH "noisy" brain organizes during cognition processes. Nevertheless, the TTV in the brain network remains unrevealed, notably how it varies in different task stages. In this study, resorting to the time-varying directed electroencephalogram (EEG) network, we investigated the time-resolved TTV of the functional organizations subserving the evoking of P300. Results revealed anomalous TTV in time-varying networks across the delta, theta, alpha, beta1, and beta2 bands of SCH. The TTV of cross-band time-varying network properties can efficiently recognize SCH (accuracy: 83.39%, sensitivity: 89.22%, and specificity: 74.55%) and evaluate the psychiatric symptoms (i.e., Hamilton's depression scale-24, r = 0.430, p = 0.022, RMSE = 4.891; Hamilton's anxiety scale-14, r = 0.377, p = 0.048, RMSE = 4.575). Our study brings new insights into probing the time-resolved functional organization of the brain, and TTV in time-varying networks may provide a powerful tool for mining the substrates accounting for SCH and diagnostic evaluation of SCH.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).