具有广泛代表性表型的铜绿假单胞菌临床分离株功能多样性的模型驱动特征描述。

IF 4 2区 生物学 Q1 GENETICS & HEREDITY
Mohammad Mazharul Islam, Glynis L Kolling, Emma M Glass, Joanna B Goldberg, Jason A Papin
{"title":"具有广泛代表性表型的铜绿假单胞菌临床分离株功能多样性的模型驱动特征描述。","authors":"Mohammad Mazharul Islam, Glynis L Kolling, Emma M Glass, Joanna B Goldberg, Jason A Papin","doi":"10.1099/mgen.0.001259","DOIUrl":null,"url":null,"abstract":"<p><p><i>Pseudomonas aeruginosa</i> is a leading cause of infections in immunocompromised individuals and in healthcare settings. This study aims to understand the relationships between phenotypic diversity and the functional metabolic landscape of <i>P. aeruginosa</i> clinical isolates. To better understand the metabolic repertoire of <i>P. aeruginosa</i> in infection, we deeply profiled a representative set from a library of 971 clinical <i>P. aeruginosa</i> isolates with corresponding patient metadata and bacterial phenotypes. The genotypic clustering based on whole-genome sequencing of the isolates, multilocus sequence types, and the phenotypic clustering generated from a multi-parametric analysis were compared to each other to assess the genotype-phenotype correlation. Genome-scale metabolic network reconstructions were developed for each isolate through amendments to an existing PA14 network reconstruction. These network reconstructions show diverse metabolic functionalities and enhance the collective <i>P. aeruginosa</i> pangenome metabolic repertoire. Characterizing this rich set of clinical <i>P. aeruginosa</i> isolates allows for a deeper understanding of the genotypic and metabolic diversity of the pathogen in a clinical setting and lays a foundation for further investigation of the metabolic landscape of this pathogen and host-associated metabolic differences during infection.</p>","PeriodicalId":18487,"journal":{"name":"Microbial Genomics","volume":"10 6","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261902/pdf/","citationCount":"0","resultStr":"{\"title\":\"Model-driven characterization of functional diversity of <i>Pseudomonas aeruginosa</i> clinical isolates with broadly representative phenotypes.\",\"authors\":\"Mohammad Mazharul Islam, Glynis L Kolling, Emma M Glass, Joanna B Goldberg, Jason A Papin\",\"doi\":\"10.1099/mgen.0.001259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Pseudomonas aeruginosa</i> is a leading cause of infections in immunocompromised individuals and in healthcare settings. This study aims to understand the relationships between phenotypic diversity and the functional metabolic landscape of <i>P. aeruginosa</i> clinical isolates. To better understand the metabolic repertoire of <i>P. aeruginosa</i> in infection, we deeply profiled a representative set from a library of 971 clinical <i>P. aeruginosa</i> isolates with corresponding patient metadata and bacterial phenotypes. The genotypic clustering based on whole-genome sequencing of the isolates, multilocus sequence types, and the phenotypic clustering generated from a multi-parametric analysis were compared to each other to assess the genotype-phenotype correlation. Genome-scale metabolic network reconstructions were developed for each isolate through amendments to an existing PA14 network reconstruction. These network reconstructions show diverse metabolic functionalities and enhance the collective <i>P. aeruginosa</i> pangenome metabolic repertoire. Characterizing this rich set of clinical <i>P. aeruginosa</i> isolates allows for a deeper understanding of the genotypic and metabolic diversity of the pathogen in a clinical setting and lays a foundation for further investigation of the metabolic landscape of this pathogen and host-associated metabolic differences during infection.</p>\",\"PeriodicalId\":18487,\"journal\":{\"name\":\"Microbial Genomics\",\"volume\":\"10 6\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261902/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1099/mgen.0.001259\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mgen.0.001259","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

铜绿假单胞菌是导致免疫力低下人群和医疗机构感染的主要原因。本研究旨在了解铜绿假单胞菌临床分离株的表型多样性与功能代谢景观之间的关系。为了更好地了解铜绿假单胞菌在感染过程中的代谢谱系,我们从 971 株临床铜绿假单胞菌分离株库中选取了一组具有代表性的菌株,并结合相应的患者元数据和细菌表型进行了深度剖析。基于分离株全基因组测序的基因型聚类、多焦点序列类型和多参数分析产生的表型聚类相互比较,以评估基因型与表型的相关性。通过对现有的 PA14 网络重建进行修正,为每个分离物建立了基因组尺度的代谢网络重建。这些网络重建显示了不同的代谢功能,增强了铜绿微囊桿菌庞基因组的集体代谢功能。对这组丰富的临床铜绿假单胞菌分离物进行鉴定,可加深对临床环境中病原体基因型和代谢多样性的了解,并为进一步研究这种病原体的代谢景观以及感染期间宿主相关的代谢差异奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-driven characterization of functional diversity of Pseudomonas aeruginosa clinical isolates with broadly representative phenotypes.

Pseudomonas aeruginosa is a leading cause of infections in immunocompromised individuals and in healthcare settings. This study aims to understand the relationships between phenotypic diversity and the functional metabolic landscape of P. aeruginosa clinical isolates. To better understand the metabolic repertoire of P. aeruginosa in infection, we deeply profiled a representative set from a library of 971 clinical P. aeruginosa isolates with corresponding patient metadata and bacterial phenotypes. The genotypic clustering based on whole-genome sequencing of the isolates, multilocus sequence types, and the phenotypic clustering generated from a multi-parametric analysis were compared to each other to assess the genotype-phenotype correlation. Genome-scale metabolic network reconstructions were developed for each isolate through amendments to an existing PA14 network reconstruction. These network reconstructions show diverse metabolic functionalities and enhance the collective P. aeruginosa pangenome metabolic repertoire. Characterizing this rich set of clinical P. aeruginosa isolates allows for a deeper understanding of the genotypic and metabolic diversity of the pathogen in a clinical setting and lays a foundation for further investigation of the metabolic landscape of this pathogen and host-associated metabolic differences during infection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Genomics
Microbial Genomics Medicine-Epidemiology
CiteScore
6.60
自引率
2.60%
发文量
153
审稿时长
12 weeks
期刊介绍: Microbial Genomics (MGen) is a fully open access, mandatory open data and peer-reviewed journal publishing high-profile original research on archaea, bacteria, microbial eukaryotes and viruses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信