{"title":"用于生成放射报告的视觉重新校准和选通增强网络。","authors":"Xiaodi Hou, Guoming Sang, Zhi Liu, Xiaobo Li, Yijia Zhang","doi":"10.1089/cmb.2024.0514","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic radiology medical report generation is a necessary development of artificial intelligence technology in the health care. This technology serves to aid doctors in producing comprehensive diagnostic reports, alleviating the burdensome workloads of medical professionals. However, there are some challenges in generating radiological reports: (1) visual and textual data biases and (2) long-distance dependency problem. To tackle these issues, we design a visual recalibration and gating enhancement network (VRGE), which composes of the visual recalibration module and the gating enhancement module (gating enhancement module, GEM). Specifically, the visual recalibration module enhances the recognition of abnormal features in lesion areas of medical images. The GEM dynamically adjusts the contextual information in the report by introducing gating mechanisms, focusing on capturing professional medical terminology in medical text reports. We have conducted sufficient experiments on the public datasets of IU X-Ray to illustrate that the VRGE outperforms existing models.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"486-497"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual Recalibration and Gating Enhancement Network for Radiology Report Generation.\",\"authors\":\"Xiaodi Hou, Guoming Sang, Zhi Liu, Xiaobo Li, Yijia Zhang\",\"doi\":\"10.1089/cmb.2024.0514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automatic radiology medical report generation is a necessary development of artificial intelligence technology in the health care. This technology serves to aid doctors in producing comprehensive diagnostic reports, alleviating the burdensome workloads of medical professionals. However, there are some challenges in generating radiological reports: (1) visual and textual data biases and (2) long-distance dependency problem. To tackle these issues, we design a visual recalibration and gating enhancement network (VRGE), which composes of the visual recalibration module and the gating enhancement module (gating enhancement module, GEM). Specifically, the visual recalibration module enhances the recognition of abnormal features in lesion areas of medical images. The GEM dynamically adjusts the contextual information in the report by introducing gating mechanisms, focusing on capturing professional medical terminology in medical text reports. We have conducted sufficient experiments on the public datasets of IU X-Ray to illustrate that the VRGE outperforms existing models.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"486-497\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2024.0514\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2024.0514","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
自动生成放射科医疗报告是人工智能技术在医疗领域的必要发展。这项技术可以帮助医生生成全面的诊断报告,减轻医疗专业人员繁重的工作量。然而,在生成放射医学报告方面存在一些挑战:(1) 视觉和文本数据偏差;(2) 远距离依赖问题。为了解决这些问题,我们设计了一个视觉再校准和选通增强网络(VRGE),它由视觉再校准模块和选通增强模块(选通增强模块,GEM)组成。具体来说,视觉重新校准模块可增强对医学图像病变区域异常特征的识别。GEM 通过引入门控机制,动态调整报告中的上下文信息,重点捕捉医疗文本报告中的专业医疗术语。我们在 IU X-Ray 的公共数据集上进行了充分的实验,证明 VRGE 的性能优于现有模型。
Visual Recalibration and Gating Enhancement Network for Radiology Report Generation.
Automatic radiology medical report generation is a necessary development of artificial intelligence technology in the health care. This technology serves to aid doctors in producing comprehensive diagnostic reports, alleviating the burdensome workloads of medical professionals. However, there are some challenges in generating radiological reports: (1) visual and textual data biases and (2) long-distance dependency problem. To tackle these issues, we design a visual recalibration and gating enhancement network (VRGE), which composes of the visual recalibration module and the gating enhancement module (gating enhancement module, GEM). Specifically, the visual recalibration module enhances the recognition of abnormal features in lesion areas of medical images. The GEM dynamically adjusts the contextual information in the report by introducing gating mechanisms, focusing on capturing professional medical terminology in medical text reports. We have conducted sufficient experiments on the public datasets of IU X-Ray to illustrate that the VRGE outperforms existing models.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases