Fe3GaTe2中通过在范德华间隙中插入铁而稳定的高温奈尔天顶离子

Rana Saha, Holger L. Meyerheim, Börge Göbel, Ingrid Mertig, Stuart S. P. Parkin
{"title":"Fe3GaTe2中通过在范德华间隙中插入铁而稳定的高温奈尔天顶离子","authors":"Rana Saha, Holger L. Meyerheim, Börge Göbel, Ingrid Mertig, Stuart S. P. Parkin","doi":"10.1038/s44306-024-00024-5","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) van der Waals (vdW) magnets that exhibit ferromagnetism at ambient temperature show great promise for spintronic applications. However, until now, only a few pristine or doped 2D magnets have demonstrated the ability to host non-collinear spin textures, thereby limiting their potential applications. Here we directly observe Néel-type skyrmions in the metallic vdW magnetic compound Fe3GaTe2 (FGaT) up to temperatures well above room temperature (≈340 K) in the absence of any external magnetic field. We show that the presence of defects in the structure of FGaT make its structure acentric and therefore compatible with hosting skyrmions that would otherwise not be possible. Indeed, in this regard it is very similar to the closely related compound Fe3GeTe2 (FGT), whose structure with the same space group P3m1 is also realized by defects. Interestingly, however, FGaT accommodates a significantly higher concentration of Fe within the vdW gaps, likely accounting for its enhanced Curie temperature (TC). In addition to the Néel skyrmions observed in the temperature range of 250–340 K, we also detect type-I and -II Bloch-type skyrmionic bubbles in the temperature range of 100–200 K due to an enhanced magnitude of dipole-dipole interactions relative to the Dzyaloshinskii-Moriya exchange interaction. Self-intercalation is thus a highly interesting property of vdW magnets that considerably modifies their fundamental properties.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00024-5.pdf","citationCount":"0","resultStr":"{\"title\":\"High-temperature Néel skyrmions in Fe3GaTe2 stabilized by Fe intercalation into the van der Waals gap\",\"authors\":\"Rana Saha, Holger L. Meyerheim, Börge Göbel, Ingrid Mertig, Stuart S. P. Parkin\",\"doi\":\"10.1038/s44306-024-00024-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional (2D) van der Waals (vdW) magnets that exhibit ferromagnetism at ambient temperature show great promise for spintronic applications. However, until now, only a few pristine or doped 2D magnets have demonstrated the ability to host non-collinear spin textures, thereby limiting their potential applications. Here we directly observe Néel-type skyrmions in the metallic vdW magnetic compound Fe3GaTe2 (FGaT) up to temperatures well above room temperature (≈340 K) in the absence of any external magnetic field. We show that the presence of defects in the structure of FGaT make its structure acentric and therefore compatible with hosting skyrmions that would otherwise not be possible. Indeed, in this regard it is very similar to the closely related compound Fe3GeTe2 (FGT), whose structure with the same space group P3m1 is also realized by defects. Interestingly, however, FGaT accommodates a significantly higher concentration of Fe within the vdW gaps, likely accounting for its enhanced Curie temperature (TC). In addition to the Néel skyrmions observed in the temperature range of 250–340 K, we also detect type-I and -II Bloch-type skyrmionic bubbles in the temperature range of 100–200 K due to an enhanced magnitude of dipole-dipole interactions relative to the Dzyaloshinskii-Moriya exchange interaction. Self-intercalation is thus a highly interesting property of vdW magnets that considerably modifies their fundamental properties.\",\"PeriodicalId\":501713,\"journal\":{\"name\":\"npj Spintronics\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44306-024-00024-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Spintronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44306-024-00024-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Spintronics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44306-024-00024-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在环境温度下表现出铁磁性的二维(2D)范德华(vdW)磁体为自旋电子应用带来了巨大前景。然而,到目前为止,只有少数原始或掺杂的二维磁体展示了承载非共线自旋纹理的能力,从而限制了它们的潜在应用。在这里,我们直接观察到金属 vdW 磁性化合物 Fe3GaTe2 (FGaT) 在没有任何外部磁场的情况下,温度远高于室温(≈340 K)时的奈尔型天线。我们的研究表明,FGaT 结构中存在的缺陷使其结构成为偏心结构,因此可以容纳天幕,而这在其他情况下是不可能的。事实上,在这一点上,它与密切相关的化合物 Fe3GeTe2 (FGT) 非常相似,后者的结构具有相同的空间群 P3m1,也是通过缺陷实现的。但有趣的是,FGaT 在 vdW 间隙中容纳了更高浓度的铁,这可能是其居里温度(TC)提高的原因。除了在 250-340 K 的温度范围内观察到的奈尔天电离外,我们还在 100-200 K 的温度范围内检测到了 I 型和 II 型布洛赫天电离气泡,这是因为相对于 Dzyaloshinskii-Moriya 交换相互作用,偶极-偶极相互作用的程度增强了。因此,自内闰是 vdW 磁体的一个非常有趣的特性,它极大地改变了 vdW 磁体的基本特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-temperature Néel skyrmions in Fe3GaTe2 stabilized by Fe intercalation into the van der Waals gap

High-temperature Néel skyrmions in Fe3GaTe2 stabilized by Fe intercalation into the van der Waals gap
Two-dimensional (2D) van der Waals (vdW) magnets that exhibit ferromagnetism at ambient temperature show great promise for spintronic applications. However, until now, only a few pristine or doped 2D magnets have demonstrated the ability to host non-collinear spin textures, thereby limiting their potential applications. Here we directly observe Néel-type skyrmions in the metallic vdW magnetic compound Fe3GaTe2 (FGaT) up to temperatures well above room temperature (≈340 K) in the absence of any external magnetic field. We show that the presence of defects in the structure of FGaT make its structure acentric and therefore compatible with hosting skyrmions that would otherwise not be possible. Indeed, in this regard it is very similar to the closely related compound Fe3GeTe2 (FGT), whose structure with the same space group P3m1 is also realized by defects. Interestingly, however, FGaT accommodates a significantly higher concentration of Fe within the vdW gaps, likely accounting for its enhanced Curie temperature (TC). In addition to the Néel skyrmions observed in the temperature range of 250–340 K, we also detect type-I and -II Bloch-type skyrmionic bubbles in the temperature range of 100–200 K due to an enhanced magnitude of dipole-dipole interactions relative to the Dzyaloshinskii-Moriya exchange interaction. Self-intercalation is thus a highly interesting property of vdW magnets that considerably modifies their fundamental properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信