通过离子束改性铁锗薄膜诱导可调的天离子-锑铱离子系统

M. B. Venuti, Xiyue S. Zhang, Eric J. Lang, Sadhvikas J. Addamane, Hanjong Paik, Portia Allen, Peter Sharma, David Muller, Khalid Hattar, Tzu-Ming Lu, Serena Eley
{"title":"通过离子束改性铁锗薄膜诱导可调的天离子-锑铱离子系统","authors":"M. B. Venuti, Xiyue S. Zhang, Eric J. Lang, Sadhvikas J. Addamane, Hanjong Paik, Portia Allen, Peter Sharma, David Muller, Khalid Hattar, Tzu-Ming Lu, Serena Eley","doi":"10.1038/s44306-024-00013-8","DOIUrl":null,"url":null,"abstract":"Skyrmions and antiskyrmions are nanoscale swirling textures of magnetic moments formed by chiral interactions between atomic spins in magnetic noncentrosymmetric materials and multilayer films with broken inversion symmetry. These quasiparticles are of interest for use as information carriers in next-generation, low-energy spintronic applications. To develop skyrmion-based memory and logic, we must understand skyrmion-defect interactions with two main goals—determining how skyrmions navigate intrinsic material defects and determining how to engineer disorder for optimal device operation. Here, we introduce a tunable means of creating a skyrmion-antiskyrmion system by engineering the disorder landscape in FeGe using ion irradiation. Specifically, we irradiate epitaxial B20-phase FeGe films with 2.8 MeV Au4+ ions at varying fluences, inducing amorphous regions within the crystalline matrix. Using low-temperature electrical transport and magnetization measurements, we observe a strong topological Hall effect with a double-peak feature that serves as a signature of skyrmions and antiskyrmions. These results are a step towards the development of information storage devices that use skyrmions and antiskyrmions as storage bits, and our system may serve as a testbed for theoretically predicted phenomena in skyrmion-antiskyrmion crystals.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00013-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Inducing a tunable skyrmion-antiskyrmion system through ion beam modification of FeGe films\",\"authors\":\"M. B. Venuti, Xiyue S. Zhang, Eric J. Lang, Sadhvikas J. Addamane, Hanjong Paik, Portia Allen, Peter Sharma, David Muller, Khalid Hattar, Tzu-Ming Lu, Serena Eley\",\"doi\":\"10.1038/s44306-024-00013-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skyrmions and antiskyrmions are nanoscale swirling textures of magnetic moments formed by chiral interactions between atomic spins in magnetic noncentrosymmetric materials and multilayer films with broken inversion symmetry. These quasiparticles are of interest for use as information carriers in next-generation, low-energy spintronic applications. To develop skyrmion-based memory and logic, we must understand skyrmion-defect interactions with two main goals—determining how skyrmions navigate intrinsic material defects and determining how to engineer disorder for optimal device operation. Here, we introduce a tunable means of creating a skyrmion-antiskyrmion system by engineering the disorder landscape in FeGe using ion irradiation. Specifically, we irradiate epitaxial B20-phase FeGe films with 2.8 MeV Au4+ ions at varying fluences, inducing amorphous regions within the crystalline matrix. Using low-temperature electrical transport and magnetization measurements, we observe a strong topological Hall effect with a double-peak feature that serves as a signature of skyrmions and antiskyrmions. These results are a step towards the development of information storage devices that use skyrmions and antiskyrmions as storage bits, and our system may serve as a testbed for theoretically predicted phenomena in skyrmion-antiskyrmion crystals.\",\"PeriodicalId\":501713,\"journal\":{\"name\":\"npj Spintronics\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44306-024-00013-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Spintronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44306-024-00013-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Spintronics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44306-024-00013-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

天旋子(Skyrmions)和反天旋子(antiskyrmions)是磁性非中心对称材料和具有反转对称性的多层薄膜中原子自旋之间的手性相互作用所形成的纳米级磁矩漩涡纹理。这些准粒子可用作下一代低能自旋电子应用中的信息载体。要开发基于天融子的存储器和逻辑,我们必须了解天融子与缺陷之间的相互作用,主要目标有两个--确定天融子如何引导固有材料缺陷,以及确定如何设计无序状态以实现最佳器件运行。在这里,我们介绍了一种可调的方法,即利用离子辐照技术对铁锗中的无序状况进行工程设计,从而创建天离子-锑蛭离子系统。具体来说,我们用 2.8 MeV Au4+ 离子以不同的通量辐照外延 B20 相 FeGe 薄膜,从而在晶体基质中诱导出非晶区。通过低温电输运和磁化测量,我们观察到了强烈的拓扑霍尔效应,其双峰特征是天旋子和反天旋子的标志。这些结果为开发使用天崩子和反天崩子作为存储比特的信息存储设备迈出了一步,我们的系统可以作为天崩子-反天崩子晶体中理论预测现象的试验平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inducing a tunable skyrmion-antiskyrmion system through ion beam modification of FeGe films

Inducing a tunable skyrmion-antiskyrmion system through ion beam modification of FeGe films
Skyrmions and antiskyrmions are nanoscale swirling textures of magnetic moments formed by chiral interactions between atomic spins in magnetic noncentrosymmetric materials and multilayer films with broken inversion symmetry. These quasiparticles are of interest for use as information carriers in next-generation, low-energy spintronic applications. To develop skyrmion-based memory and logic, we must understand skyrmion-defect interactions with two main goals—determining how skyrmions navigate intrinsic material defects and determining how to engineer disorder for optimal device operation. Here, we introduce a tunable means of creating a skyrmion-antiskyrmion system by engineering the disorder landscape in FeGe using ion irradiation. Specifically, we irradiate epitaxial B20-phase FeGe films with 2.8 MeV Au4+ ions at varying fluences, inducing amorphous regions within the crystalline matrix. Using low-temperature electrical transport and magnetization measurements, we observe a strong topological Hall effect with a double-peak feature that serves as a signature of skyrmions and antiskyrmions. These results are a step towards the development of information storage devices that use skyrmions and antiskyrmions as storage bits, and our system may serve as a testbed for theoretically predicted phenomena in skyrmion-antiskyrmion crystals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信