自旋轨道效应对取代环膦氮烷环电流强度的影响: c$ c$ -P 3 $$ {}_3 $$ N 3 $$ {}_3 $$ X 6 $$ {}_6 $$ (X=H、F, Cl, Br, I, At, Ts ) $$ \left(\mathbf{X}=\mathbf{H},\mathbf{F},\mathbf{Cl},\mathbf{Br},\mathbf{I},\mathbf{At},\mathbf{Ts}\right) $$

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Rodrigo Ramirez-Tagle, Luis Alvarez-Thon
{"title":"自旋轨道效应对取代环膦氮烷环电流强度的影响: c$ c$ -P 3 $$ {}_3 $$ N 3 $$ {}_3 $$ X 6 $$ {}_6 $$ (X=H、F, Cl, Br, I, At, Ts ) $$ \\left(\\mathbf{X}=\\mathbf{H},\\mathbf{F},\\mathbf{Cl},\\mathbf{Br},\\mathbf{I},\\mathbf{At},\\mathbf{Ts}\\right) $$","authors":"Rodrigo Ramirez-Tagle,&nbsp;Luis Alvarez-Thon","doi":"10.1002/qua.27431","DOIUrl":null,"url":null,"abstract":"<p>This work reports the magnetic index of aromaticity of cyclophosphazene (<span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n </mrow>\n <annotation>$$ c $$</annotation>\n </semantics></math>-P<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_3 $$</annotation>\n </semantics></math>N<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_3 $$</annotation>\n </semantics></math>H<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>6</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_6 $$</annotation>\n </semantics></math>) and their halogenated cyclic derivatives: <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n </mrow>\n <annotation>$$ c $$</annotation>\n </semantics></math>-P<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_3 $$</annotation>\n </semantics></math>N<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_3 $$</annotation>\n </semantics></math>F<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>6</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_6 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n </mrow>\n <annotation>$$ c $$</annotation>\n </semantics></math>-P<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_3 $$</annotation>\n </semantics></math>N<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_3 $$</annotation>\n </semantics></math>Cl<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>6</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_6 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n </mrow>\n <annotation>$$ c $$</annotation>\n </semantics></math>-P<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_3 $$</annotation>\n </semantics></math>N<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_3 $$</annotation>\n </semantics></math>Br<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>6</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_6 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n </mrow>\n <annotation>$$ c $$</annotation>\n </semantics></math>-P<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_3 $$</annotation>\n </semantics></math>N<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_3 $$</annotation>\n </semantics></math>I<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>6</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_6 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n </mrow>\n <annotation>$$ c $$</annotation>\n </semantics></math>-P<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_3 $$</annotation>\n </semantics></math>N<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_3 $$</annotation>\n </semantics></math>At<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>6</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_6 $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n </mrow>\n <annotation>$$ c $$</annotation>\n </semantics></math>-P<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_3 $$</annotation>\n </semantics></math>N<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_3 $$</annotation>\n </semantics></math>Ts<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>6</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_6 $$</annotation>\n </semantics></math>. This index, also known as ring-current strength, is calculated by numerical integration of the magnetically-induced current density vector field which is generated by a perturbing external magnetic field. Due to the presence of heavy <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>=</mo>\n <mi>Br</mi>\n <mo>,</mo>\n <mspace></mspace>\n <mi>I</mi>\n <mo>,</mo>\n <mspace></mspace>\n <mi>At</mi>\n </mrow>\n <annotation>$$ \\mathrm{X}=\\mathrm{Br},\\mathrm{I},\\mathrm{At} $$</annotation>\n </semantics></math> atoms in <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n </mrow>\n <annotation>$$ c $$</annotation>\n </semantics></math>-P<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_3 $$</annotation>\n </semantics></math>N<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_3 $$</annotation>\n </semantics></math>X<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>6</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_6 $$</annotation>\n </semantics></math>, important relativistic were expected. Accordingly, all-electron density functional theory (DFT) calculations were carried out using the four-component Dirac-Coulomb (DC) Hamiltonian, including scalar and spin-orbit relativistic effects. The values were also compared with the corresponding spin-free (scalar relativistic) ones.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 11","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin-orbit effects on the ring current strengths of the substituted cyclophosphazene: \\n \\n \\n c\\n \\n $$ c $$\\n -P\\n \\n \\n \\n \\n \\n 3\\n \\n \\n \\n $$ {}_3 $$\\n N\\n \\n \\n \\n \\n \\n 3\\n \\n \\n \\n $$ {}_3 $$\\n X\\n \\n \\n \\n \\n \\n 6\\n \\n \\n \\n $$ {}_6 $$\\n \\n \\n \\n (\\n X=H, F, Cl, Br, I, At, Ts\\n )\\n \\n $$ \\\\left(\\\\mathbf{X}=\\\\mathbf{H},\\\\mathbf{F},\\\\mathbf{Cl},\\\\mathbf{Br},\\\\mathbf{I},\\\\mathbf{At},\\\\mathbf{Ts}\\\\right) $$\",\"authors\":\"Rodrigo Ramirez-Tagle,&nbsp;Luis Alvarez-Thon\",\"doi\":\"10.1002/qua.27431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work reports the magnetic index of aromaticity of cyclophosphazene (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n <annotation>$$ c $$</annotation>\\n </semantics></math>-P<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_3 $$</annotation>\\n </semantics></math>N<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_3 $$</annotation>\\n </semantics></math>H<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>6</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_6 $$</annotation>\\n </semantics></math>) and their halogenated cyclic derivatives: <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n <annotation>$$ c $$</annotation>\\n </semantics></math>-P<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_3 $$</annotation>\\n </semantics></math>N<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_3 $$</annotation>\\n </semantics></math>F<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>6</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_6 $$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n <annotation>$$ c $$</annotation>\\n </semantics></math>-P<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_3 $$</annotation>\\n </semantics></math>N<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_3 $$</annotation>\\n </semantics></math>Cl<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>6</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_6 $$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n <annotation>$$ c $$</annotation>\\n </semantics></math>-P<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_3 $$</annotation>\\n </semantics></math>N<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_3 $$</annotation>\\n </semantics></math>Br<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>6</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_6 $$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n <annotation>$$ c $$</annotation>\\n </semantics></math>-P<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_3 $$</annotation>\\n </semantics></math>N<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_3 $$</annotation>\\n </semantics></math>I<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>6</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_6 $$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n <annotation>$$ c $$</annotation>\\n </semantics></math>-P<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_3 $$</annotation>\\n </semantics></math>N<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_3 $$</annotation>\\n </semantics></math>At<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>6</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_6 $$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n <annotation>$$ c $$</annotation>\\n </semantics></math>-P<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_3 $$</annotation>\\n </semantics></math>N<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_3 $$</annotation>\\n </semantics></math>Ts<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>6</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_6 $$</annotation>\\n </semantics></math>. This index, also known as ring-current strength, is calculated by numerical integration of the magnetically-induced current density vector field which is generated by a perturbing external magnetic field. Due to the presence of heavy <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n <mo>=</mo>\\n <mi>Br</mi>\\n <mo>,</mo>\\n <mspace></mspace>\\n <mi>I</mi>\\n <mo>,</mo>\\n <mspace></mspace>\\n <mi>At</mi>\\n </mrow>\\n <annotation>$$ \\\\mathrm{X}=\\\\mathrm{Br},\\\\mathrm{I},\\\\mathrm{At} $$</annotation>\\n </semantics></math> atoms in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n <annotation>$$ c $$</annotation>\\n </semantics></math>-P<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_3 $$</annotation>\\n </semantics></math>N<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_3 $$</annotation>\\n </semantics></math>X<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>6</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_6 $$</annotation>\\n </semantics></math>, important relativistic were expected. Accordingly, all-electron density functional theory (DFT) calculations were carried out using the four-component Dirac-Coulomb (DC) Hamiltonian, including scalar and spin-orbit relativistic effects. The values were also compared with the corresponding spin-free (scalar relativistic) ones.</p>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":\"124 11\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.27431\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27431","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

This work reports the magnetic index of aromaticity of cyclophosphazene ( c $$ c $$ -P 3 $$ {}_3 $$ N 3 $$ {}_3 $$ H 6 $$ {}_6 $$ ) and their halogenated cyclic derivatives: c $$ c $$ -P 3 $$ {}_3 $$ N 3 $$ {}_3 $$ F 6 $$ {}_6 $$ , c $$ c $$ -P 3 $$ {}_3 $$ N 3 $$ {}_3 $$ Cl 6 $$ {}_6 $$ , c $$ c $$ -P 3 $$ {}_3 $$ N 3 $$ {}_3 $$ Br 6 $$ {}_6 $$ , c $$ c $$ -P 3 $$ {}_3 $$ N 3 $$ {}_3 $$ I 6 $$ {}_6 $$ , c $$ c $$ -P 3 $$ {}_3 $$ N 3 $$ {}_3 $$ At 6 $$ {}_6 $$ and c $$ c $$ -P 3 $$ {}_3 $$ N 3 $$ {}_3 $$ Ts 6
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spin-orbit effects on the ring current strengths of the substituted cyclophosphazene: 
         
            
               c
            
            $$ c $$
         -P
         
            
               
                  
                  
                     3
                  
               
            
            $$ {}_3 $$
         N
         
            
               
                  
                  
                     3
                  
               
            
            $$ {}_3 $$
         X
         
            
               
                  
                  
                     6
                  
               
            
            $$ {}_6 $$
          
         
            
               (
               X=H, F, Cl, Br, I, At, Ts
               )
            
            $$ \left(\mathbf{X}=\mathbf{H},\mathbf{F},\mathbf{Cl},\mathbf{Br},\mathbf{I},\mathbf{At},\mathbf{Ts}\right) $$

Spin-orbit effects on the ring current strengths of the substituted cyclophosphazene: c $$ c $$ -P 3 $$ {}_3 $$ N 3 $$ {}_3 $$ X 6 $$ {}_6 $$ ( X=H, F, Cl, Br, I, At, Ts ) $$ \left(\mathbf{X}=\mathbf{H},\mathbf{F},\mathbf{Cl},\mathbf{Br},\mathbf{I},\mathbf{At},\mathbf{Ts}\right) $$

This work reports the magnetic index of aromaticity of cyclophosphazene ( c $$ c $$ -P 3 $$ {}_3 $$ N 3 $$ {}_3 $$ H 6 $$ {}_6 $$ ) and their halogenated cyclic derivatives: c $$ c $$ -P 3 $$ {}_3 $$ N 3 $$ {}_3 $$ F 6 $$ {}_6 $$ , c $$ c $$ -P 3 $$ {}_3 $$ N 3 $$ {}_3 $$ Cl 6 $$ {}_6 $$ , c $$ c $$ -P 3 $$ {}_3 $$ N 3 $$ {}_3 $$ Br 6 $$ {}_6 $$ , c $$ c $$ -P 3 $$ {}_3 $$ N 3 $$ {}_3 $$ I 6 $$ {}_6 $$ , c $$ c $$ -P 3 $$ {}_3 $$ N 3 $$ {}_3 $$ At 6 $$ {}_6 $$ and c $$ c $$ -P 3 $$ {}_3 $$ N 3 $$ {}_3 $$ Ts 6 $$ {}_6 $$ . This index, also known as ring-current strength, is calculated by numerical integration of the magnetically-induced current density vector field which is generated by a perturbing external magnetic field. Due to the presence of heavy X = Br , I , At $$ \mathrm{X}=\mathrm{Br},\mathrm{I},\mathrm{At} $$ atoms in c $$ c $$ -P 3 $$ {}_3 $$ N 3 $$ {}_3 $$ X 6 $$ {}_6 $$ , important relativistic were expected. Accordingly, all-electron density functional theory (DFT) calculations were carried out using the four-component Dirac-Coulomb (DC) Hamiltonian, including scalar and spin-orbit relativistic effects. The values were also compared with the corresponding spin-free (scalar relativistic) ones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信