{"title":"降水变化和温度敏感性在决定受威胁的亚热带雨林特有植物 Triunia robusta(山龙眼科)种群生存能力方面的相对重要性","authors":"Yoko Shimizu, Arnon Accad, Alison Shapcott","doi":"10.1111/aec.13546","DOIUrl":null,"url":null,"abstract":"<p>Threatened species in rainforests may be vulnerable to climate change, because of their potentially narrow thermal tolerances, small population sizes, restricted distributions and limited dispersal. We investigated the relative influence of potential climate change on the population viability of <i>Triunia robusta</i> (Proteaceae), an endangered rainforest shrub endemic to southeast Queensland, Australia. A spatially explicit, stochastic population model with seven stage classes was developed and linked with the species distribution model (SDM) to explore a variety of hypothetical climate change simulations over a 90-year period from 2010 to 2100: (1) constant population dynamics, (2) changes in habitat distributions as trend in carrying capacity and (3) changes in habitat distributions, precipitation and temperature regime as relative change in seedling survival and fecundity. The results revealed high vulnerability of small populations to local extinction regardless of geographical location or climatic stressors, while some larger populations located in the southern end of the species distribution range showed persistence in-situ. <i>Triunia robusta</i> was found to be sensitive to reduced precipitation and increased temperature, limiting the species reproductive activities and seedling establishment and reducing the overall abundance consequently. Integration of population models and SDM allowed for the evaluation of multiple climatic stressors that may affect habitat distributions and population dynamics of <i>T. robusta</i> and ultimately suggest potential implications for future conservation and management planning with respect to climate change.</p>","PeriodicalId":8663,"journal":{"name":"Austral Ecology","volume":"49 6","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/aec.13546","citationCount":"0","resultStr":"{\"title\":\"The relative importance of precipitation change and temperature sensitivity in determining the population viability of a threatened sub-tropical rainforest endemic plant Triunia robusta (Proteaceae)\",\"authors\":\"Yoko Shimizu, Arnon Accad, Alison Shapcott\",\"doi\":\"10.1111/aec.13546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Threatened species in rainforests may be vulnerable to climate change, because of their potentially narrow thermal tolerances, small population sizes, restricted distributions and limited dispersal. We investigated the relative influence of potential climate change on the population viability of <i>Triunia robusta</i> (Proteaceae), an endangered rainforest shrub endemic to southeast Queensland, Australia. A spatially explicit, stochastic population model with seven stage classes was developed and linked with the species distribution model (SDM) to explore a variety of hypothetical climate change simulations over a 90-year period from 2010 to 2100: (1) constant population dynamics, (2) changes in habitat distributions as trend in carrying capacity and (3) changes in habitat distributions, precipitation and temperature regime as relative change in seedling survival and fecundity. The results revealed high vulnerability of small populations to local extinction regardless of geographical location or climatic stressors, while some larger populations located in the southern end of the species distribution range showed persistence in-situ. <i>Triunia robusta</i> was found to be sensitive to reduced precipitation and increased temperature, limiting the species reproductive activities and seedling establishment and reducing the overall abundance consequently. Integration of population models and SDM allowed for the evaluation of multiple climatic stressors that may affect habitat distributions and population dynamics of <i>T. robusta</i> and ultimately suggest potential implications for future conservation and management planning with respect to climate change.</p>\",\"PeriodicalId\":8663,\"journal\":{\"name\":\"Austral Ecology\",\"volume\":\"49 6\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/aec.13546\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Austral Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/aec.13546\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austral Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/aec.13546","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
The relative importance of precipitation change and temperature sensitivity in determining the population viability of a threatened sub-tropical rainforest endemic plant Triunia robusta (Proteaceae)
Threatened species in rainforests may be vulnerable to climate change, because of their potentially narrow thermal tolerances, small population sizes, restricted distributions and limited dispersal. We investigated the relative influence of potential climate change on the population viability of Triunia robusta (Proteaceae), an endangered rainforest shrub endemic to southeast Queensland, Australia. A spatially explicit, stochastic population model with seven stage classes was developed and linked with the species distribution model (SDM) to explore a variety of hypothetical climate change simulations over a 90-year period from 2010 to 2100: (1) constant population dynamics, (2) changes in habitat distributions as trend in carrying capacity and (3) changes in habitat distributions, precipitation and temperature regime as relative change in seedling survival and fecundity. The results revealed high vulnerability of small populations to local extinction regardless of geographical location or climatic stressors, while some larger populations located in the southern end of the species distribution range showed persistence in-situ. Triunia robusta was found to be sensitive to reduced precipitation and increased temperature, limiting the species reproductive activities and seedling establishment and reducing the overall abundance consequently. Integration of population models and SDM allowed for the evaluation of multiple climatic stressors that may affect habitat distributions and population dynamics of T. robusta and ultimately suggest potential implications for future conservation and management planning with respect to climate change.
期刊介绍:
Austral Ecology is the premier journal for basic and applied ecology in the Southern Hemisphere. As the official Journal of The Ecological Society of Australia (ESA), Austral Ecology addresses the commonality between ecosystems in Australia and many parts of southern Africa, South America, New Zealand and Oceania. For example many species in the unique biotas of these regions share common Gondwana ancestors. ESA''s aim is to publish innovative research to encourage the sharing of information and experiences that enrich the understanding of the ecology of the Southern Hemisphere.
Austral Ecology involves an editorial board with representatives from Australia, South Africa, New Zealand, Brazil and Argentina. These representatives provide expert opinions, access to qualified reviewers and act as a focus for attracting a wide range of contributions from countries across the region.
Austral Ecology publishes original papers describing experimental, observational or theoretical studies on terrestrial, marine or freshwater systems, which are considered without taxonomic bias. Special thematic issues are published regularly, including symposia on the ecology of estuaries and soft sediment habitats, freshwater systems and coral reef fish.