用于极端多输入多输出波束管理的分层 ML 编解码器设计

Ryan M. Dreifuerst;Robert W. Heath
{"title":"用于极端多输入多输出波束管理的分层 ML 编解码器设计","authors":"Ryan M. Dreifuerst;Robert W. Heath","doi":"10.1109/TMLCN.2024.3402178","DOIUrl":null,"url":null,"abstract":"Beam management is a strategy to unify beamforming and channel state information (CSI) acquisition with large antenna arrays in 5G. Codebooks serve multiple uses in beam management including beamforming reference signals, CSI reporting, and analog beam training. In this paper, we propose and evaluate a machine learning-refined codebook design process for extremely large multiple-input multiple-output (X-MIMO) systems. We propose a neural network and beam selection strategy to design the initial access and refinement codebooks using end-to-end learning from beamspace representations. The algorithm, called Extreme-Beam Management (\n<inline-formula> <tex-math>$\\text {X-BM}$ </tex-math></inline-formula>\n), can significantly improve the performance of extremely large arrays as envisioned for 6G and capture realistic wireless and physical layer aspects. Our results show an 8dB improvement in initial access and overall effective spectral efficiency improvements compared to traditional codebook methods.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"2 ","pages":"688-702"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10533211","citationCount":"0","resultStr":"{\"title\":\"Hierarchical ML Codebook Design for Extreme MIMO Beam Management\",\"authors\":\"Ryan M. Dreifuerst;Robert W. Heath\",\"doi\":\"10.1109/TMLCN.2024.3402178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beam management is a strategy to unify beamforming and channel state information (CSI) acquisition with large antenna arrays in 5G. Codebooks serve multiple uses in beam management including beamforming reference signals, CSI reporting, and analog beam training. In this paper, we propose and evaluate a machine learning-refined codebook design process for extremely large multiple-input multiple-output (X-MIMO) systems. We propose a neural network and beam selection strategy to design the initial access and refinement codebooks using end-to-end learning from beamspace representations. The algorithm, called Extreme-Beam Management (\\n<inline-formula> <tex-math>$\\\\text {X-BM}$ </tex-math></inline-formula>\\n), can significantly improve the performance of extremely large arrays as envisioned for 6G and capture realistic wireless and physical layer aspects. Our results show an 8dB improvement in initial access and overall effective spectral efficiency improvements compared to traditional codebook methods.\",\"PeriodicalId\":100641,\"journal\":{\"name\":\"IEEE Transactions on Machine Learning in Communications and Networking\",\"volume\":\"2 \",\"pages\":\"688-702\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10533211\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Machine Learning in Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10533211/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10533211/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

波束管理是在 5G 中利用大型天线阵列统一波束成形和信道状态信息(CSI)采集的一种策略。编码本在波束管理中具有多种用途,包括波束成形参考信号、CSI 报告和模拟波束训练。在本文中,我们为超大型多输入多输出(X-MIMO)系统提出并评估了一种机器学习提炼的编码本设计流程。我们提出了一种神经网络和波束选择策略,利用波束空间表征的端到端学习来设计初始接入和细化码本。该算法被称为 "极端波束管理"(Extreme-Beam Management),可以显著提高超大型阵列的性能(如 6G 的设想),并捕捉现实的无线和物理层方面。我们的研究结果表明,与传统的编码本方法相比,初始接入和整体有效频谱效率提高了 8dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical ML Codebook Design for Extreme MIMO Beam Management
Beam management is a strategy to unify beamforming and channel state information (CSI) acquisition with large antenna arrays in 5G. Codebooks serve multiple uses in beam management including beamforming reference signals, CSI reporting, and analog beam training. In this paper, we propose and evaluate a machine learning-refined codebook design process for extremely large multiple-input multiple-output (X-MIMO) systems. We propose a neural network and beam selection strategy to design the initial access and refinement codebooks using end-to-end learning from beamspace representations. The algorithm, called Extreme-Beam Management ( $\text {X-BM}$ ), can significantly improve the performance of extremely large arrays as envisioned for 6G and capture realistic wireless and physical layer aspects. Our results show an 8dB improvement in initial access and overall effective spectral efficiency improvements compared to traditional codebook methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信