概率回归中的一致瘦吉布斯

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jiarong Ouyang, Xuan Cao
{"title":"概率回归中的一致瘦吉布斯","authors":"Jiarong Ouyang,&nbsp;Xuan Cao","doi":"10.1016/j.csda.2024.107993","DOIUrl":null,"url":null,"abstract":"<div><p>Spike and slab priors have emerged as effective and computationally scalable tools for Bayesian variable selection in high-dimensional linear regression. However, the crucial model selection consistency and efficient computational strategies using spike and slab priors in probit regression have rarely been investigated. A hierarchical probit model with continuous spike and slab priors over regression coefficients is considered, and a highly scalable Gibbs sampler with a computational complexity that grows only linearly in the dimension of predictors is proposed. Specifically, the “Skinny Gibbs” algorithm is adapted to the setting of probit and negative binomial regression and model selection consistency for the proposed method under probit model is established, when the number of covariates is allowed to grow much larger than the sample size. Through simulation studies, the method is shown to achieve superior empirical performance compared with other state-of-the art methods. Gene expression data from 51 asthmatic and 44 non-asthmatic samples are analyzed and the performance for predicting asthma using the proposed approach is compared with existing approaches.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"198 ","pages":"Article 107993"},"PeriodicalIF":1.5000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consistent skinny Gibbs in probit regression\",\"authors\":\"Jiarong Ouyang,&nbsp;Xuan Cao\",\"doi\":\"10.1016/j.csda.2024.107993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spike and slab priors have emerged as effective and computationally scalable tools for Bayesian variable selection in high-dimensional linear regression. However, the crucial model selection consistency and efficient computational strategies using spike and slab priors in probit regression have rarely been investigated. A hierarchical probit model with continuous spike and slab priors over regression coefficients is considered, and a highly scalable Gibbs sampler with a computational complexity that grows only linearly in the dimension of predictors is proposed. Specifically, the “Skinny Gibbs” algorithm is adapted to the setting of probit and negative binomial regression and model selection consistency for the proposed method under probit model is established, when the number of covariates is allowed to grow much larger than the sample size. Through simulation studies, the method is shown to achieve superior empirical performance compared with other state-of-the art methods. Gene expression data from 51 asthmatic and 44 non-asthmatic samples are analyzed and the performance for predicting asthma using the proposed approach is compared with existing approaches.</p></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"198 \",\"pages\":\"Article 107993\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016794732400077X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016794732400077X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

尖峰和板块先验已成为高维线性回归中贝叶斯变量选择的有效且可扩展计算的工具。然而,在 probit 回归中使用尖峰和板块先验的关键模型选择一致性和高效计算策略却鲜有研究。本文考虑了对回归系数具有连续尖峰和板块先验的分层 probit 模型,并提出了一种具有高度可扩展性的吉布斯采样器,其计算复杂度仅随预测维度线性增长。具体地说,"Skinny Gibbs "算法适用于 probit 和负二项回归,当协变量的数量远大于样本量时,建立了拟议方法在 probit 模型下的模型选择一致性。通过模拟研究表明,与其他最先进的方法相比,该方法具有更优越的经验性能。对 51 个哮喘样本和 44 个非哮喘样本的基因表达数据进行了分析,并将拟议方法与现有方法预测哮喘的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Consistent skinny Gibbs in probit regression

Spike and slab priors have emerged as effective and computationally scalable tools for Bayesian variable selection in high-dimensional linear regression. However, the crucial model selection consistency and efficient computational strategies using spike and slab priors in probit regression have rarely been investigated. A hierarchical probit model with continuous spike and slab priors over regression coefficients is considered, and a highly scalable Gibbs sampler with a computational complexity that grows only linearly in the dimension of predictors is proposed. Specifically, the “Skinny Gibbs” algorithm is adapted to the setting of probit and negative binomial regression and model selection consistency for the proposed method under probit model is established, when the number of covariates is allowed to grow much larger than the sample size. Through simulation studies, the method is shown to achieve superior empirical performance compared with other state-of-the art methods. Gene expression data from 51 asthmatic and 44 non-asthmatic samples are analyzed and the performance for predicting asthma using the proposed approach is compared with existing approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信