Adrián Gómez-Sánchez , Raffaele Vitale , Cyril Ruckebusch , Anna de Juan
{"title":"用正交-替代最小二乘法 (O-ALS) 解决 PCA 中的缺失值问题","authors":"Adrián Gómez-Sánchez , Raffaele Vitale , Cyril Ruckebusch , Anna de Juan","doi":"10.1016/j.chemolab.2024.105153","DOIUrl":null,"url":null,"abstract":"<div><p>Dealing with missing data poses a challenge in Principal Component Analysis (PCA) since the most common algorithms are not designed to handle them. Several approaches have been proposed to solve the missing value problem in PCA, such as Imputation based on SVD (I-SVD), where missing entries are filled by imputation and updated in every iteration until convergence of the PCA model, and the adaptation of the Nonlinear Iterative Partial Least Squares (NIPALS) algorithm, able to work skipping the missing entries during the least-squares estimation of scores and loadings. However, some limitations have been reported for both approaches. On the one hand, convergence of the I-SVD algorithm can be very slow for data sets with a high percentage of missing data. On the other hand, the orthogonality properties among scores and loadings might be lost when using NIPALS.</p><p>To solve these issues and perform PCA of data sets with missing values without the need of imputation steps, a novel algorithm called Orthogonalized-Alternating Least Squares (O-ALS) is proposed. The O-ALS algorithm is an alternating least-squares algorithm that estimates the scores and loadings subject to the Gram-Schmidt orthogonalization constraint. The way to estimate scores and loadings is adapted to work only with the available information.</p><p>In this study, the performance of O-ALS is tested and compared with NIPALS and I-SVD in simulated data sets and in a real case study. The results show that O-ALS is an accurate and fast algorithm to analyze data with any percentage and distribution pattern of missing entries, being able to provide correct scores and loadings in cases where I-SVD and NIPALS do not perform satisfactorily.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"250 ","pages":"Article 105153"},"PeriodicalIF":3.7000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169743924000935/pdfft?md5=86dff5a658083570086161657efcf7cb&pid=1-s2.0-S0169743924000935-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Solving the missing value problem in PCA by Orthogonalized-Alternating Least Squares (O-ALS)\",\"authors\":\"Adrián Gómez-Sánchez , Raffaele Vitale , Cyril Ruckebusch , Anna de Juan\",\"doi\":\"10.1016/j.chemolab.2024.105153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dealing with missing data poses a challenge in Principal Component Analysis (PCA) since the most common algorithms are not designed to handle them. Several approaches have been proposed to solve the missing value problem in PCA, such as Imputation based on SVD (I-SVD), where missing entries are filled by imputation and updated in every iteration until convergence of the PCA model, and the adaptation of the Nonlinear Iterative Partial Least Squares (NIPALS) algorithm, able to work skipping the missing entries during the least-squares estimation of scores and loadings. However, some limitations have been reported for both approaches. On the one hand, convergence of the I-SVD algorithm can be very slow for data sets with a high percentage of missing data. On the other hand, the orthogonality properties among scores and loadings might be lost when using NIPALS.</p><p>To solve these issues and perform PCA of data sets with missing values without the need of imputation steps, a novel algorithm called Orthogonalized-Alternating Least Squares (O-ALS) is proposed. The O-ALS algorithm is an alternating least-squares algorithm that estimates the scores and loadings subject to the Gram-Schmidt orthogonalization constraint. The way to estimate scores and loadings is adapted to work only with the available information.</p><p>In this study, the performance of O-ALS is tested and compared with NIPALS and I-SVD in simulated data sets and in a real case study. The results show that O-ALS is an accurate and fast algorithm to analyze data with any percentage and distribution pattern of missing entries, being able to provide correct scores and loadings in cases where I-SVD and NIPALS do not perform satisfactorily.</p></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"250 \",\"pages\":\"Article 105153\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169743924000935/pdfft?md5=86dff5a658083570086161657efcf7cb&pid=1-s2.0-S0169743924000935-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743924000935\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924000935","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Solving the missing value problem in PCA by Orthogonalized-Alternating Least Squares (O-ALS)
Dealing with missing data poses a challenge in Principal Component Analysis (PCA) since the most common algorithms are not designed to handle them. Several approaches have been proposed to solve the missing value problem in PCA, such as Imputation based on SVD (I-SVD), where missing entries are filled by imputation and updated in every iteration until convergence of the PCA model, and the adaptation of the Nonlinear Iterative Partial Least Squares (NIPALS) algorithm, able to work skipping the missing entries during the least-squares estimation of scores and loadings. However, some limitations have been reported for both approaches. On the one hand, convergence of the I-SVD algorithm can be very slow for data sets with a high percentage of missing data. On the other hand, the orthogonality properties among scores and loadings might be lost when using NIPALS.
To solve these issues and perform PCA of data sets with missing values without the need of imputation steps, a novel algorithm called Orthogonalized-Alternating Least Squares (O-ALS) is proposed. The O-ALS algorithm is an alternating least-squares algorithm that estimates the scores and loadings subject to the Gram-Schmidt orthogonalization constraint. The way to estimate scores and loadings is adapted to work only with the available information.
In this study, the performance of O-ALS is tested and compared with NIPALS and I-SVD in simulated data sets and in a real case study. The results show that O-ALS is an accurate and fast algorithm to analyze data with any percentage and distribution pattern of missing entries, being able to provide correct scores and loadings in cases where I-SVD and NIPALS do not perform satisfactorily.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.