平面外动力学:圆形受限八体框架内的研究

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
M.Javed Idrisi , M.Shahbaz Ullah , Worku Tenna , M.Tauheed Khan , M.Faisal Khan , Mustafa Kamal
{"title":"平面外动力学:圆形受限八体框架内的研究","authors":"M.Javed Idrisi ,&nbsp;M.Shahbaz Ullah ,&nbsp;Worku Tenna ,&nbsp;M.Tauheed Khan ,&nbsp;M.Faisal Khan ,&nbsp;Mustafa Kamal","doi":"10.1016/j.newast.2024.102260","DOIUrl":null,"url":null,"abstract":"<div><p>This manuscript thoroughly explores the dynamics of a test particle around out-of-plane equilibrium points within the circular restricted eight-body problem. This particular scenario features a central primary emitting radiation, and it is a specific case derived from Kalvouridis and Hadjifotinou's analysis of Maxwell's ring problem in 2011. Our investigation uncovers two symmetrical out-of-plane equilibrium points denoted as <em>E</em><sub>1,2</sub>(0, 0, <em>z</em><sub>0</sub>), where <em>z</em><sub>0</sub> is determined by the equation <em>z</em><sub>0</sub> = ±<em>a</em> tanυ; υ = arcsin[(‒<em>q</em>/6)<sup>1/3</sup>], with <em>q</em> falling within the range (‒6, 0). Here, <em>a</em> denotes the radius of the circular orbit of peripheral primaries around the radiating central primary, and <em>q</em> signifies the radiation factor due to the central primary. Significantly, for a critical radiation factor value, <em>q<sub>c</sub></em> = ‒3/√2, the equilibrium points <em>E</em><sub>1,2</sub> precisely align along the <em>z</em>-axis on the sphere of radius <em>a</em> and centered at the central primary. Within the intervals of ‒6 &lt; <em>q</em> &lt; <em>q<sub>c</sub></em> and <em>q<sub>c</sub></em> &lt; <em>q</em> &lt; 0, equilibrium points <em>E</em><sub>1</sub> and <em>E</em><sub>2</sub> are situated outside and inside the mentioned sphere on the <em>z</em>-axis, respectively. Specifically, for <em>q</em> ≤ <em>q<sub>c</sub></em>, | <em>z</em><sub>0</sub> | ≤ <em>a</em>, while for <em>q</em> &gt; <em>q<sub>c</sub></em>, | <em>z</em><sub>0</sub> | &gt; <em>a</em>. The study further explores the linear stability of <em>E</em><sub>1,2</sub>. By analyzing characteristic curves derived from the variational equations of motion for infinitesimal mass around these equilibrium points, particularly for <em>q</em> values of ‒3/4, ‒3/√2, and ‒9√3/4, we observe that these out-of-plane equilibria, <em>E</em><sub>1,2</sub>, demonstrate linear instability. This insight provides a comprehensive understanding of the intricate dynamics in this specific multi-body problem. Finally, the research illustrates periodic orbits surrounding the out-of-plane equilibrium point for specific values of <em>q</em>.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"111 ","pages":"Article 102260"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Out-of-plane dynamics: a study within the circular restricted eight-body framework\",\"authors\":\"M.Javed Idrisi ,&nbsp;M.Shahbaz Ullah ,&nbsp;Worku Tenna ,&nbsp;M.Tauheed Khan ,&nbsp;M.Faisal Khan ,&nbsp;Mustafa Kamal\",\"doi\":\"10.1016/j.newast.2024.102260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This manuscript thoroughly explores the dynamics of a test particle around out-of-plane equilibrium points within the circular restricted eight-body problem. This particular scenario features a central primary emitting radiation, and it is a specific case derived from Kalvouridis and Hadjifotinou's analysis of Maxwell's ring problem in 2011. Our investigation uncovers two symmetrical out-of-plane equilibrium points denoted as <em>E</em><sub>1,2</sub>(0, 0, <em>z</em><sub>0</sub>), where <em>z</em><sub>0</sub> is determined by the equation <em>z</em><sub>0</sub> = ±<em>a</em> tanυ; υ = arcsin[(‒<em>q</em>/6)<sup>1/3</sup>], with <em>q</em> falling within the range (‒6, 0). Here, <em>a</em> denotes the radius of the circular orbit of peripheral primaries around the radiating central primary, and <em>q</em> signifies the radiation factor due to the central primary. Significantly, for a critical radiation factor value, <em>q<sub>c</sub></em> = ‒3/√2, the equilibrium points <em>E</em><sub>1,2</sub> precisely align along the <em>z</em>-axis on the sphere of radius <em>a</em> and centered at the central primary. Within the intervals of ‒6 &lt; <em>q</em> &lt; <em>q<sub>c</sub></em> and <em>q<sub>c</sub></em> &lt; <em>q</em> &lt; 0, equilibrium points <em>E</em><sub>1</sub> and <em>E</em><sub>2</sub> are situated outside and inside the mentioned sphere on the <em>z</em>-axis, respectively. Specifically, for <em>q</em> ≤ <em>q<sub>c</sub></em>, | <em>z</em><sub>0</sub> | ≤ <em>a</em>, while for <em>q</em> &gt; <em>q<sub>c</sub></em>, | <em>z</em><sub>0</sub> | &gt; <em>a</em>. The study further explores the linear stability of <em>E</em><sub>1,2</sub>. By analyzing characteristic curves derived from the variational equations of motion for infinitesimal mass around these equilibrium points, particularly for <em>q</em> values of ‒3/4, ‒3/√2, and ‒9√3/4, we observe that these out-of-plane equilibria, <em>E</em><sub>1,2</sub>, demonstrate linear instability. This insight provides a comprehensive understanding of the intricate dynamics in this specific multi-body problem. Finally, the research illustrates periodic orbits surrounding the out-of-plane equilibrium point for specific values of <em>q</em>.</p></div>\",\"PeriodicalId\":54727,\"journal\":{\"name\":\"New Astronomy\",\"volume\":\"111 \",\"pages\":\"Article 102260\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1384107624000745\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1384107624000745","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本手稿深入探讨了环形受限八体问题中测试粒子围绕平面外平衡点的动力学。这种特殊情况的特征是中心原点发射辐射,它是卡尔沃里迪斯和哈吉福提努在 2011 年分析麦克斯韦环问题时衍生出的一种特殊情况。我们的研究发现了两个对称的平面外平衡点,记为 E1,2(0, 0, z0),其中 z0 由方程 z0 = ±a tanυ; υ = arcsin[(-q/6)1/3] 决定,q 在 (-6, 0) 范围内。这里,a 表示外围原基围绕辐射中心原基的圆形轨道半径,q 表示中心原基的辐射系数。值得注意的是,在临界辐射因子值 qc = -3/√2 时,平衡点 E1,2 在半径为 a、以中心原电池为中心的球面上沿 Z 轴精确对齐。在 -6 < q < qc 和 qc < q < 0 的区间内,平衡点 E1 和 E2 分别位于所述球体外和球体内的 z 轴上。研究进一步探讨了 E1,2 的线性稳定性。通过分析这些平衡点周围无穷小质量的变分运动方程得出的特征曲线,特别是 q 值为 -3/4、-3/√2 和 -9√3/4 时,我们观察到这些平面外平衡点 E1,2 显示出线性不稳定性。这一洞察力让我们对这一特定多体问题中错综复杂的动力学有了全面的了解。最后,研究说明了特定 q 值下平面外平衡点周围的周期性轨道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Out-of-plane dynamics: a study within the circular restricted eight-body framework

This manuscript thoroughly explores the dynamics of a test particle around out-of-plane equilibrium points within the circular restricted eight-body problem. This particular scenario features a central primary emitting radiation, and it is a specific case derived from Kalvouridis and Hadjifotinou's analysis of Maxwell's ring problem in 2011. Our investigation uncovers two symmetrical out-of-plane equilibrium points denoted as E1,2(0, 0, z0), where z0 is determined by the equation z0 = ±a tanυ; υ = arcsin[(‒q/6)1/3], with q falling within the range (‒6, 0). Here, a denotes the radius of the circular orbit of peripheral primaries around the radiating central primary, and q signifies the radiation factor due to the central primary. Significantly, for a critical radiation factor value, qc = ‒3/√2, the equilibrium points E1,2 precisely align along the z-axis on the sphere of radius a and centered at the central primary. Within the intervals of ‒6 < q < qc and qc < q < 0, equilibrium points E1 and E2 are situated outside and inside the mentioned sphere on the z-axis, respectively. Specifically, for qqc, | z0 | ≤ a, while for q > qc, | z0 | > a. The study further explores the linear stability of E1,2. By analyzing characteristic curves derived from the variational equations of motion for infinitesimal mass around these equilibrium points, particularly for q values of ‒3/4, ‒3/√2, and ‒9√3/4, we observe that these out-of-plane equilibria, E1,2, demonstrate linear instability. This insight provides a comprehensive understanding of the intricate dynamics in this specific multi-body problem. Finally, the research illustrates periodic orbits surrounding the out-of-plane equilibrium point for specific values of q.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Astronomy
New Astronomy 地学天文-天文与天体物理
CiteScore
4.00
自引率
10.00%
发文量
109
审稿时长
13.6 weeks
期刊介绍: New Astronomy publishes articles in all fields of astronomy and astrophysics, with a particular focus on computational astronomy: mathematical and astronomy techniques and methodology, simulations, modelling and numerical results and computational techniques in instrumentation. New Astronomy includes full length research articles and review articles. The journal covers solar, stellar, galactic and extragalactic astronomy and astrophysics. It reports on original research in all wavelength bands, ranging from radio to gamma-ray.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信