带有变量误差的离散选择模型的估计:带有总体服务水平变量的显性偏好数据的应用

IF 5.8 1区 工程技术 Q1 ECONOMICS
Marco Batarce
{"title":"带有变量误差的离散选择模型的估计:带有总体服务水平变量的显性偏好数据的应用","authors":"Marco Batarce","doi":"10.1016/j.trb.2024.102985","DOIUrl":null,"url":null,"abstract":"<div><p>This article proposes a method to estimate disaggregated discrete choice models with errors in the variables. The objective is to estimate the discrete choice models' coefficients to compute the value of time and use it for cost-benefit analysis in transportation planning. The method is general, as it only requires a validation sample to estimate the conditional density of the error-free variables given the mismeasured variables. More specifically, we assume that the attributes of the chosen alternative are reported without error in revealed preference surveys, and we use this information as the validation sample. The mismeasured variables may be spatially aggregate service levels from mobility surveys or transportation network models. Monte Carlo simulations show that the proposed method substantially reduces bias in parameters. We validate the technique with two real data sets from Santiago, Chile.</p></div>","PeriodicalId":54418,"journal":{"name":"Transportation Research Part B-Methodological","volume":"185 ","pages":"Article 102985"},"PeriodicalIF":5.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of discrete choice models with error in variables: An application to revealed preference data with aggregate service level variables\",\"authors\":\"Marco Batarce\",\"doi\":\"10.1016/j.trb.2024.102985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article proposes a method to estimate disaggregated discrete choice models with errors in the variables. The objective is to estimate the discrete choice models' coefficients to compute the value of time and use it for cost-benefit analysis in transportation planning. The method is general, as it only requires a validation sample to estimate the conditional density of the error-free variables given the mismeasured variables. More specifically, we assume that the attributes of the chosen alternative are reported without error in revealed preference surveys, and we use this information as the validation sample. The mismeasured variables may be spatially aggregate service levels from mobility surveys or transportation network models. Monte Carlo simulations show that the proposed method substantially reduces bias in parameters. We validate the technique with two real data sets from Santiago, Chile.</p></div>\",\"PeriodicalId\":54418,\"journal\":{\"name\":\"Transportation Research Part B-Methodological\",\"volume\":\"185 \",\"pages\":\"Article 102985\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part B-Methodological\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0191261524001097\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part B-Methodological","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191261524001097","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种估算变量误差的离散选择模型的方法。其目的是估计离散选择模型的系数,以计算时间价值,并将其用于交通规划中的成本效益分析。该方法是通用的,因为它只需要一个验证样本,就能在测量误差变量的情况下估算出无误变量的条件密度。更具体地说,我们假设所选替代方案的属性在揭示偏好调查中无误报告,并将此信息作为验证样本。误测变量可以是流动性调查或交通网络模型中的空间综合服务水平。蒙特卡罗模拟显示,所提出的方法大大减少了参数偏差。我们利用智利圣地亚哥的两个真实数据集对该技术进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of discrete choice models with error in variables: An application to revealed preference data with aggregate service level variables

This article proposes a method to estimate disaggregated discrete choice models with errors in the variables. The objective is to estimate the discrete choice models' coefficients to compute the value of time and use it for cost-benefit analysis in transportation planning. The method is general, as it only requires a validation sample to estimate the conditional density of the error-free variables given the mismeasured variables. More specifically, we assume that the attributes of the chosen alternative are reported without error in revealed preference surveys, and we use this information as the validation sample. The mismeasured variables may be spatially aggregate service levels from mobility surveys or transportation network models. Monte Carlo simulations show that the proposed method substantially reduces bias in parameters. We validate the technique with two real data sets from Santiago, Chile.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportation Research Part B-Methodological
Transportation Research Part B-Methodological 工程技术-工程:土木
CiteScore
12.40
自引率
8.80%
发文量
143
审稿时长
14.1 weeks
期刊介绍: Transportation Research: Part B publishes papers on all methodological aspects of the subject, particularly those that require mathematical analysis. The general theme of the journal is the development and solution of problems that are adequately motivated to deal with important aspects of the design and/or analysis of transportation systems. Areas covered include: traffic flow; design and analysis of transportation networks; control and scheduling; optimization; queuing theory; logistics; supply chains; development and application of statistical, econometric and mathematical models to address transportation problems; cost models; pricing and/or investment; traveler or shipper behavior; cost-benefit methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信