你不知道的东西会伤害你:缺失数据和部分信贷模型估算。

Journal of applied measurement Pub Date : 2016-01-01
Sarah L Thomas, Karen M Schmidt, Monica K Erbacher, Cindy S Bergeman
{"title":"你不知道的东西会伤害你:缺失数据和部分信贷模型估算。","authors":"Sarah L Thomas, Karen M Schmidt, Monica K Erbacher, Cindy S Bergeman","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The authors investigated the effect of missing completely at random (MCAR) item responses on partial credit model (PCM) parameter estimates in a longitudinal study of Positive Affect. Participants were 307 adults from the older cohort of the Notre Dame Study of Health and Well-Being (Bergeman and Deboeck, 2014) who completed questionnaires including Positive Affect items for 56 days. Additional missing responses were introduced to the data, randomly replacing 20%, 50%, and 70% of the responses on each item and each day with missing values, in addition to the existing missing data. Results indicated that item locations and person trait level measures diverged from the original estimates as the level of degradation from induced missing data increased. In addition, standard errors of these estimates increased with the level of degradation. Thus, MCAR data does damage the quality and precision of PCM estimates. </p>","PeriodicalId":73608,"journal":{"name":"Journal of applied measurement","volume":"17 1","pages":"14-34"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636626/pdf/","citationCount":"0","resultStr":"{\"title\":\"What You Don't Know Can Hurt You: Missing Data and Partial Credit Model Estimates.\",\"authors\":\"Sarah L Thomas, Karen M Schmidt, Monica K Erbacher, Cindy S Bergeman\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The authors investigated the effect of missing completely at random (MCAR) item responses on partial credit model (PCM) parameter estimates in a longitudinal study of Positive Affect. Participants were 307 adults from the older cohort of the Notre Dame Study of Health and Well-Being (Bergeman and Deboeck, 2014) who completed questionnaires including Positive Affect items for 56 days. Additional missing responses were introduced to the data, randomly replacing 20%, 50%, and 70% of the responses on each item and each day with missing values, in addition to the existing missing data. Results indicated that item locations and person trait level measures diverged from the original estimates as the level of degradation from induced missing data increased. In addition, standard errors of these estimates increased with the level of degradation. Thus, MCAR data does damage the quality and precision of PCM estimates. </p>\",\"PeriodicalId\":73608,\"journal\":{\"name\":\"Journal of applied measurement\",\"volume\":\"17 1\",\"pages\":\"14-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636626/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied measurement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied measurement","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作者在一项关于积极情感的纵向研究中调查了完全随机缺失(MCAR)项目回答对部分信用模型(PCM)参数估计的影响。参与者是圣母大学健康与幸福研究(Notre Dame Study of Health and Well-Being,Bergeman 和 Deboeck,2014 年)老年队列中的 307 名成年人,他们在 56 天内完成了包括积极情感项目在内的问卷调查。除了现有的缺失数据外,我们还在数据中引入了额外的缺失应答,随机替换了每个项目和每天 20%、50% 和 70% 的应答缺失值。结果表明,随着诱导缺失数据退化程度的增加,项目位置和个人特质水平的测量结果与原始估计值出现了偏差。此外,这些估计值的标准误差也随着退化程度的增加而增加。因此,MCAR 数据确实会损害 PCM 估计值的质量和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What You Don't Know Can Hurt You: Missing Data and Partial Credit Model Estimates.

The authors investigated the effect of missing completely at random (MCAR) item responses on partial credit model (PCM) parameter estimates in a longitudinal study of Positive Affect. Participants were 307 adults from the older cohort of the Notre Dame Study of Health and Well-Being (Bergeman and Deboeck, 2014) who completed questionnaires including Positive Affect items for 56 days. Additional missing responses were introduced to the data, randomly replacing 20%, 50%, and 70% of the responses on each item and each day with missing values, in addition to the existing missing data. Results indicated that item locations and person trait level measures diverged from the original estimates as the level of degradation from induced missing data increased. In addition, standard errors of these estimates increased with the level of degradation. Thus, MCAR data does damage the quality and precision of PCM estimates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信