使用大型语言模型解决移动医疗中的健康扫盲问题:案例报告。

IF 1.3 4区 医学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Elliot Loughran, Madison Kane, Tami H Wyatt, Alex Kerley, Sarah Lowe, Xueping Li
{"title":"使用大型语言模型解决移动医疗中的健康扫盲问题:案例报告。","authors":"Elliot Loughran, Madison Kane, Tami H Wyatt, Alex Kerley, Sarah Lowe, Xueping Li","doi":"10.1097/CIN.0000000000001152","DOIUrl":null,"url":null,"abstract":"<p><p>The innate complexity of medical topics often makes it challenging to produce educational content for the public. Although there are resources available to help authors appraise the complexity of their content, there are woefully few resources available to help authors reduce that complexity after it occurs. In this case study, we evaluate using ChatGPT to reduce the complex language used in health-related educational materials. ChatGPT adapted content from the SmartSHOTS mobile application, which is geared toward caregivers of children aged 0 to 24 months. SmartSHOTS helps reduce barriers and improve adherence to vaccination schedules. ChatGPT reduced complex sentence structure and rewrote content to align with a third-grade reading level. Furthermore, using ChatGPT to edit content already written removes the potential for unnoticed, artificial intelligence-produced inaccuracies. As an editorial tool, ChatGPT was effective, efficient, and free to use. This article discusses the potential of ChatGPT as an effective, time-efficient, and open-source method for editing health-related educational materials to reflect a comprehendible reading level.</p>","PeriodicalId":50694,"journal":{"name":"Cin-Computers Informatics Nursing","volume":" ","pages":"696-703"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Large Language Models to Address Health Literacy in mHealth: Case Report.\",\"authors\":\"Elliot Loughran, Madison Kane, Tami H Wyatt, Alex Kerley, Sarah Lowe, Xueping Li\",\"doi\":\"10.1097/CIN.0000000000001152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The innate complexity of medical topics often makes it challenging to produce educational content for the public. Although there are resources available to help authors appraise the complexity of their content, there are woefully few resources available to help authors reduce that complexity after it occurs. In this case study, we evaluate using ChatGPT to reduce the complex language used in health-related educational materials. ChatGPT adapted content from the SmartSHOTS mobile application, which is geared toward caregivers of children aged 0 to 24 months. SmartSHOTS helps reduce barriers and improve adherence to vaccination schedules. ChatGPT reduced complex sentence structure and rewrote content to align with a third-grade reading level. Furthermore, using ChatGPT to edit content already written removes the potential for unnoticed, artificial intelligence-produced inaccuracies. As an editorial tool, ChatGPT was effective, efficient, and free to use. This article discusses the potential of ChatGPT as an effective, time-efficient, and open-source method for editing health-related educational materials to reflect a comprehendible reading level.</p>\",\"PeriodicalId\":50694,\"journal\":{\"name\":\"Cin-Computers Informatics Nursing\",\"volume\":\" \",\"pages\":\"696-703\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cin-Computers Informatics Nursing\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/CIN.0000000000001152\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cin-Computers Informatics Nursing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CIN.0000000000001152","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

医学主题与生俱来的复杂性往往使制作面向公众的教育内容具有挑战性。虽然有一些资源可以帮助作者评估其内容的复杂性,但很少有资源可以帮助作者在内容复杂化之后降低复杂性。在本案例研究中,我们对使用 ChatGPT 减少健康相关教育材料中的复杂语言进行了评估。ChatGPT 采用了 SmartSHOTS 移动应用程序的内容,该应用程序面向 0 到 24 个月大儿童的看护者。SmartSHOTS 有助于减少接种疫苗的障碍,提高接种疫苗的依从性。ChatGPT 减少了复杂的句子结构,并根据三年级的阅读水平重写了内容。此外,使用 ChatGPT 来编辑已撰写的内容还能消除人工智能产生的不准确内容。作为一种编辑工具,ChatGPT 是有效、高效和免费的。本文讨论了 ChatGPT 作为一种有效、省时、开源的编辑健康相关教育材料的方法的潜力,以反映可理解的阅读水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Large Language Models to Address Health Literacy in mHealth: Case Report.

The innate complexity of medical topics often makes it challenging to produce educational content for the public. Although there are resources available to help authors appraise the complexity of their content, there are woefully few resources available to help authors reduce that complexity after it occurs. In this case study, we evaluate using ChatGPT to reduce the complex language used in health-related educational materials. ChatGPT adapted content from the SmartSHOTS mobile application, which is geared toward caregivers of children aged 0 to 24 months. SmartSHOTS helps reduce barriers and improve adherence to vaccination schedules. ChatGPT reduced complex sentence structure and rewrote content to align with a third-grade reading level. Furthermore, using ChatGPT to edit content already written removes the potential for unnoticed, artificial intelligence-produced inaccuracies. As an editorial tool, ChatGPT was effective, efficient, and free to use. This article discusses the potential of ChatGPT as an effective, time-efficient, and open-source method for editing health-related educational materials to reflect a comprehendible reading level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cin-Computers Informatics Nursing
Cin-Computers Informatics Nursing 工程技术-护理
CiteScore
2.00
自引率
15.40%
发文量
248
审稿时长
6-12 weeks
期刊介绍: For over 30 years, CIN: Computers, Informatics, Nursing has been at the interface of the science of information and the art of nursing, publishing articles on the latest developments in nursing informatics, research, education and administrative of health information technology. CIN connects you with colleagues as they share knowledge on implementation of electronic health records systems, design decision-support systems, incorporate evidence-based healthcare in practice, explore point-of-care computing in practice and education, and conceptually integrate nursing languages and standard data sets. Continuing education contact hours are available in every issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信