Sabrina Ninck, Thomas Klaus, Tatiana V Kochetkova, Sarah P Esser, Leonard Sewald, Farnusch Kaschani, Christopher Bräsen, Alexander J Probst, Ilya V Kublanov, Bettina Siebers, Markus Kaiser
{"title":"基于环境活性的蛋白质分析,从自然群落中发现功能驱动的酶。","authors":"Sabrina Ninck, Thomas Klaus, Tatiana V Kochetkova, Sarah P Esser, Leonard Sewald, Farnusch Kaschani, Christopher Bräsen, Alexander J Probst, Ilya V Kublanov, Bettina Siebers, Markus Kaiser","doi":"10.1186/s40793-024-00577-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Microbial communities are important drivers of global biogeochemical cycles, xenobiotic detoxification, as well as organic matter decomposition. Their major metabolic role in ecosystem functioning is ensured by a unique set of enzymes, providing a tremendous yet mostly hidden enzymatic potential. Exploring this enzymatic repertoire is therefore not only relevant for a better understanding of how microorganisms function in their natural environment, and thus for ecological research, but further turns microbial communities, in particular from extreme habitats, into a valuable resource for the discovery of novel enzymes with potential applications in biotechnology. Different strategies for their uncovering such as bioprospecting, which relies mainly on metagenomic approaches in combination with sequence-based bioinformatic analyses, have emerged; yet accurate function prediction of their proteomes and deciphering the in vivo activity of an enzyme remains challenging.</p><p><strong>Results: </strong>Here, we present environmental activity-based protein profiling (eABPP), a multi-omics approach that extends genome-resolved metagenomics with mass spectrometry-based ABPP. This combination allows direct profiling of environmental community samples in their native habitat and the identification of active enzymes based on their function, even without sequence or structural homologies to annotated enzyme families. eABPP thus bridges the gap between environmental genomics, correct function annotation, and in vivo enzyme activity. As a showcase, we report the successful identification of active thermostable serine hydrolases from eABPP of natural microbial communities from two independent hot springs in Kamchatka, Russia.</p><p><strong>Conclusions: </strong>By reporting enzyme activities within an ecosystem in their native state, we anticipate that eABPP will not only advance current methodological approaches to sequence homology-guided enzyme discovery from environmental ecosystems for subsequent biocatalyst development but also contributes to the ecological investigation of microbial community interactions by dissecting their underlying molecular mechanisms.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"36"},"PeriodicalIF":6.2000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145796/pdf/","citationCount":"0","resultStr":"{\"title\":\"Environmental activity-based protein profiling for function-driven enzyme discovery from natural communities.\",\"authors\":\"Sabrina Ninck, Thomas Klaus, Tatiana V Kochetkova, Sarah P Esser, Leonard Sewald, Farnusch Kaschani, Christopher Bräsen, Alexander J Probst, Ilya V Kublanov, Bettina Siebers, Markus Kaiser\",\"doi\":\"10.1186/s40793-024-00577-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Microbial communities are important drivers of global biogeochemical cycles, xenobiotic detoxification, as well as organic matter decomposition. Their major metabolic role in ecosystem functioning is ensured by a unique set of enzymes, providing a tremendous yet mostly hidden enzymatic potential. Exploring this enzymatic repertoire is therefore not only relevant for a better understanding of how microorganisms function in their natural environment, and thus for ecological research, but further turns microbial communities, in particular from extreme habitats, into a valuable resource for the discovery of novel enzymes with potential applications in biotechnology. Different strategies for their uncovering such as bioprospecting, which relies mainly on metagenomic approaches in combination with sequence-based bioinformatic analyses, have emerged; yet accurate function prediction of their proteomes and deciphering the in vivo activity of an enzyme remains challenging.</p><p><strong>Results: </strong>Here, we present environmental activity-based protein profiling (eABPP), a multi-omics approach that extends genome-resolved metagenomics with mass spectrometry-based ABPP. This combination allows direct profiling of environmental community samples in their native habitat and the identification of active enzymes based on their function, even without sequence or structural homologies to annotated enzyme families. eABPP thus bridges the gap between environmental genomics, correct function annotation, and in vivo enzyme activity. As a showcase, we report the successful identification of active thermostable serine hydrolases from eABPP of natural microbial communities from two independent hot springs in Kamchatka, Russia.</p><p><strong>Conclusions: </strong>By reporting enzyme activities within an ecosystem in their native state, we anticipate that eABPP will not only advance current methodological approaches to sequence homology-guided enzyme discovery from environmental ecosystems for subsequent biocatalyst development but also contributes to the ecological investigation of microbial community interactions by dissecting their underlying molecular mechanisms.</p>\",\"PeriodicalId\":48553,\"journal\":{\"name\":\"Environmental Microbiome\",\"volume\":\"19 1\",\"pages\":\"36\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145796/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiome\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1186/s40793-024-00577-2\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiome","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s40793-024-00577-2","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Environmental activity-based protein profiling for function-driven enzyme discovery from natural communities.
Background: Microbial communities are important drivers of global biogeochemical cycles, xenobiotic detoxification, as well as organic matter decomposition. Their major metabolic role in ecosystem functioning is ensured by a unique set of enzymes, providing a tremendous yet mostly hidden enzymatic potential. Exploring this enzymatic repertoire is therefore not only relevant for a better understanding of how microorganisms function in their natural environment, and thus for ecological research, but further turns microbial communities, in particular from extreme habitats, into a valuable resource for the discovery of novel enzymes with potential applications in biotechnology. Different strategies for their uncovering such as bioprospecting, which relies mainly on metagenomic approaches in combination with sequence-based bioinformatic analyses, have emerged; yet accurate function prediction of their proteomes and deciphering the in vivo activity of an enzyme remains challenging.
Results: Here, we present environmental activity-based protein profiling (eABPP), a multi-omics approach that extends genome-resolved metagenomics with mass spectrometry-based ABPP. This combination allows direct profiling of environmental community samples in their native habitat and the identification of active enzymes based on their function, even without sequence or structural homologies to annotated enzyme families. eABPP thus bridges the gap between environmental genomics, correct function annotation, and in vivo enzyme activity. As a showcase, we report the successful identification of active thermostable serine hydrolases from eABPP of natural microbial communities from two independent hot springs in Kamchatka, Russia.
Conclusions: By reporting enzyme activities within an ecosystem in their native state, we anticipate that eABPP will not only advance current methodological approaches to sequence homology-guided enzyme discovery from environmental ecosystems for subsequent biocatalyst development but also contributes to the ecological investigation of microbial community interactions by dissecting their underlying molecular mechanisms.
期刊介绍:
Microorganisms, omnipresent across Earth's diverse environments, play a crucial role in adapting to external changes, influencing Earth's systems and cycles, and contributing significantly to agricultural practices. Through applied microbiology, they offer solutions to various everyday needs. Environmental Microbiome recognizes the universal presence and significance of microorganisms, inviting submissions that explore the diverse facets of environmental and applied microbiological research.