Amal Chiguer, Jaber Lyahyai, Youssef El Kadiri, Imane Cherkaoui Jaouad, Yassamine Doubaj, Abdelaziz Sefiani
{"title":"临床外显子组测序发现疑似先天性溶血性贫血患者的 SPTB 基因突变与遗传性球形红细胞增多症有关","authors":"Amal Chiguer, Jaber Lyahyai, Youssef El Kadiri, Imane Cherkaoui Jaouad, Yassamine Doubaj, Abdelaziz Sefiani","doi":"10.1080/03630269.2024.2360456","DOIUrl":null,"url":null,"abstract":"<p><p>Congenital hemolytic anemia (CHA) is defined as the premature destruction of red blood cells (RBC) due to congenital or acquired defects. The hereditary form of hemolytic anemia can be divided into hemoglobinopathies, membranopathies, and enzymopathies. Hereditary spherocytosis (HS) is the most common inherited RBC membranopathy leading to congenital hemolytic anemia. To date; five genes have been associated with HS coding for cytoskeleton and transmembrane proteins, those genes are <i>SPTB, SLC4A1, EPB42, ANK1,</i> and <i>SPTA1</i>. Due to genetic heterogeneity, clinical exome sequencing (CES) was performed on four unrelated Moroccan patients referred for CHA investigation. Sanger sequencing and qPCR were performed to confirm CES results and to study the de novo character of identified variants. The molecular analysis revealed 3 novel mutations and one previously reported pathogenic variant of the <i>SPTB</i> gene confirming the diagnosis of HS in the four patients. Hereditary spherocytosis anemia is a genetically heterogenous disease which could be misdiagnosed clinically. The introduction of novel sequencing technologies can facilitate accurate genetic diagnosis, allowing an adapted care of the patient and his family.</p>","PeriodicalId":12997,"journal":{"name":"Hemoglobin","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clinical Exome Sequencing Reveals Novel Mutations in <i>SPTB</i> Gene Associated with Hereditary Spherocytosis in Patients with Suspected Congenital Hemolytic Anemia.\",\"authors\":\"Amal Chiguer, Jaber Lyahyai, Youssef El Kadiri, Imane Cherkaoui Jaouad, Yassamine Doubaj, Abdelaziz Sefiani\",\"doi\":\"10.1080/03630269.2024.2360456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Congenital hemolytic anemia (CHA) is defined as the premature destruction of red blood cells (RBC) due to congenital or acquired defects. The hereditary form of hemolytic anemia can be divided into hemoglobinopathies, membranopathies, and enzymopathies. Hereditary spherocytosis (HS) is the most common inherited RBC membranopathy leading to congenital hemolytic anemia. To date; five genes have been associated with HS coding for cytoskeleton and transmembrane proteins, those genes are <i>SPTB, SLC4A1, EPB42, ANK1,</i> and <i>SPTA1</i>. Due to genetic heterogeneity, clinical exome sequencing (CES) was performed on four unrelated Moroccan patients referred for CHA investigation. Sanger sequencing and qPCR were performed to confirm CES results and to study the de novo character of identified variants. The molecular analysis revealed 3 novel mutations and one previously reported pathogenic variant of the <i>SPTB</i> gene confirming the diagnosis of HS in the four patients. Hereditary spherocytosis anemia is a genetically heterogenous disease which could be misdiagnosed clinically. The introduction of novel sequencing technologies can facilitate accurate genetic diagnosis, allowing an adapted care of the patient and his family.</p>\",\"PeriodicalId\":12997,\"journal\":{\"name\":\"Hemoglobin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hemoglobin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03630269.2024.2360456\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hemoglobin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03630269.2024.2360456","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/4 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Clinical Exome Sequencing Reveals Novel Mutations in SPTB Gene Associated with Hereditary Spherocytosis in Patients with Suspected Congenital Hemolytic Anemia.
Congenital hemolytic anemia (CHA) is defined as the premature destruction of red blood cells (RBC) due to congenital or acquired defects. The hereditary form of hemolytic anemia can be divided into hemoglobinopathies, membranopathies, and enzymopathies. Hereditary spherocytosis (HS) is the most common inherited RBC membranopathy leading to congenital hemolytic anemia. To date; five genes have been associated with HS coding for cytoskeleton and transmembrane proteins, those genes are SPTB, SLC4A1, EPB42, ANK1, and SPTA1. Due to genetic heterogeneity, clinical exome sequencing (CES) was performed on four unrelated Moroccan patients referred for CHA investigation. Sanger sequencing and qPCR were performed to confirm CES results and to study the de novo character of identified variants. The molecular analysis revealed 3 novel mutations and one previously reported pathogenic variant of the SPTB gene confirming the diagnosis of HS in the four patients. Hereditary spherocytosis anemia is a genetically heterogenous disease which could be misdiagnosed clinically. The introduction of novel sequencing technologies can facilitate accurate genetic diagnosis, allowing an adapted care of the patient and his family.
期刊介绍:
Hemoglobin is a journal in the English language for the communication of research and information concerning hemoglobin in humans and other species. Hemoglobin publishes articles, reviews, points of view
The journal covers topics such as:
structure, function, genetics and evolution of hemoglobins
biochemical and biophysical properties of hemoglobin molecules
characterization of hemoglobin disorders (variants and thalassemias),
consequences and treatment of hemoglobin disorders
epidemiology and prevention of hemoglobin disorders (neo-natal and adult screening)
modulating factors
methodology used for diagnosis of hemoglobin disorders