Sandro M Krieg, Maximilian Schwendner, Leonie Kram, Haosu Zhang, Raimunde Liang, Chiara Negwer, Bernhard Meyer
{"title":"经颅透射超声用于可靠的无创排除脑外伤患者的颅内高压 - 概念验证研究。","authors":"Sandro M Krieg, Maximilian Schwendner, Leonie Kram, Haosu Zhang, Raimunde Liang, Chiara Negwer, Bernhard Meyer","doi":"10.1089/neu.2024.0027","DOIUrl":null,"url":null,"abstract":"<p><p>For many years, noninvasive methods to measure intracranial pressure (ICP) have been unsuccessful. However, such methods are crucial for the assessment of patients with nonpenetrating traumatic brain injuries (TBIs) who are unconscious. In this study, we explored the use of transcranial transmission ultrasound (TTUS) to gather experimental data through brain pulsatility, assessing its effectiveness in detecting high ICP using machine learning analysis. We included patients with severe TBI under invasive ICP monitoring in our intensive care unit. During periods of both normal and elevated ICP, we simultaneously recorded ICP, arterial blood pressure, heart rate, and TTUS measurements. Our classification model was based on data from 9 patients, encompassing 387 instances of elevated ICP (>15 mmHg) and 345 instances of normal ICP (<10 mmHg), and validated through a leave-one-subject-out method. The study, conducted from October 2021 to October 2022, involved 25 patients with an average age of 61.6 ± 17.6 years, producing 279 datasets with an average ICP of 11.3 mmHg (1st quartile 6.1 mmHg; 3rd quartile 14.8 mmHg). The automated TTUS analysis effectively identified ICP values over 15 mmHg with 100% sensitivity and 47% specificity. It achieved a 100% negative predictive value and a 14% positive predictive value. This suggests that TTUS can accurately rule out high ICP above 15 mmHg in TBI patients, indicating patients who may need immediate imaging or intervention. These promising results, if confirmed and expanded in larger studies, could lead to the first reliable, noninvasive screening tool for detecting elevated ICP.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":"2298-2306"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcranial Transmission Ultrasound for Reliable Noninvasive Exclusion of Intracranial Hypertension in Traumatic Brain Injury Patients: A Proof of Concept Study.\",\"authors\":\"Sandro M Krieg, Maximilian Schwendner, Leonie Kram, Haosu Zhang, Raimunde Liang, Chiara Negwer, Bernhard Meyer\",\"doi\":\"10.1089/neu.2024.0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For many years, noninvasive methods to measure intracranial pressure (ICP) have been unsuccessful. However, such methods are crucial for the assessment of patients with nonpenetrating traumatic brain injuries (TBIs) who are unconscious. In this study, we explored the use of transcranial transmission ultrasound (TTUS) to gather experimental data through brain pulsatility, assessing its effectiveness in detecting high ICP using machine learning analysis. We included patients with severe TBI under invasive ICP monitoring in our intensive care unit. During periods of both normal and elevated ICP, we simultaneously recorded ICP, arterial blood pressure, heart rate, and TTUS measurements. Our classification model was based on data from 9 patients, encompassing 387 instances of elevated ICP (>15 mmHg) and 345 instances of normal ICP (<10 mmHg), and validated through a leave-one-subject-out method. The study, conducted from October 2021 to October 2022, involved 25 patients with an average age of 61.6 ± 17.6 years, producing 279 datasets with an average ICP of 11.3 mmHg (1st quartile 6.1 mmHg; 3rd quartile 14.8 mmHg). The automated TTUS analysis effectively identified ICP values over 15 mmHg with 100% sensitivity and 47% specificity. It achieved a 100% negative predictive value and a 14% positive predictive value. This suggests that TTUS can accurately rule out high ICP above 15 mmHg in TBI patients, indicating patients who may need immediate imaging or intervention. These promising results, if confirmed and expanded in larger studies, could lead to the first reliable, noninvasive screening tool for detecting elevated ICP.</p>\",\"PeriodicalId\":16512,\"journal\":{\"name\":\"Journal of neurotrauma\",\"volume\":\" \",\"pages\":\"2298-2306\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurotrauma\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/neu.2024.0027\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurotrauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/neu.2024.0027","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Transcranial Transmission Ultrasound for Reliable Noninvasive Exclusion of Intracranial Hypertension in Traumatic Brain Injury Patients: A Proof of Concept Study.
For many years, noninvasive methods to measure intracranial pressure (ICP) have been unsuccessful. However, such methods are crucial for the assessment of patients with nonpenetrating traumatic brain injuries (TBIs) who are unconscious. In this study, we explored the use of transcranial transmission ultrasound (TTUS) to gather experimental data through brain pulsatility, assessing its effectiveness in detecting high ICP using machine learning analysis. We included patients with severe TBI under invasive ICP monitoring in our intensive care unit. During periods of both normal and elevated ICP, we simultaneously recorded ICP, arterial blood pressure, heart rate, and TTUS measurements. Our classification model was based on data from 9 patients, encompassing 387 instances of elevated ICP (>15 mmHg) and 345 instances of normal ICP (<10 mmHg), and validated through a leave-one-subject-out method. The study, conducted from October 2021 to October 2022, involved 25 patients with an average age of 61.6 ± 17.6 years, producing 279 datasets with an average ICP of 11.3 mmHg (1st quartile 6.1 mmHg; 3rd quartile 14.8 mmHg). The automated TTUS analysis effectively identified ICP values over 15 mmHg with 100% sensitivity and 47% specificity. It achieved a 100% negative predictive value and a 14% positive predictive value. This suggests that TTUS can accurately rule out high ICP above 15 mmHg in TBI patients, indicating patients who may need immediate imaging or intervention. These promising results, if confirmed and expanded in larger studies, could lead to the first reliable, noninvasive screening tool for detecting elevated ICP.
期刊介绍:
Journal of Neurotrauma is the flagship, peer-reviewed publication for reporting on the latest advances in both the clinical and laboratory investigation of traumatic brain and spinal cord injury. The Journal focuses on the basic pathobiology of injury to the central nervous system, while considering preclinical and clinical trials targeted at improving both the early management and long-term care and recovery of traumatically injured patients. This is the essential journal publishing cutting-edge basic and translational research in traumatically injured human and animal studies, with emphasis on neurodegenerative disease research linked to CNS trauma.